Write the expression in simplest form.

[tex]
2 \sqrt{54}
[/tex]

You may use numbers and the [tex]\sqrt{ }[/tex] symbol in your answer.



Answer :

To simplify the expression [tex]\(2 \sqrt{54}\)[/tex], follow these steps:

1. Factorize the number inside the square root:

Notice that [tex]\(54\)[/tex] can be factored as [tex]\(54 = 9 \times 6\)[/tex].

2. Use the property of square roots:

The square root of a product is the product of the square roots:
[tex]\[ \sqrt{54} = \sqrt{9 \times 6} = \sqrt{9} \times \sqrt{6} \][/tex]

3. Simplify the square root of [tex]\(9\)[/tex]:

Since [tex]\(\sqrt{9} = 3\)[/tex], we have:
[tex]\[ \sqrt{54} = 3 \sqrt{6} \][/tex]

4. Multiply the simplified square root by the coefficient outside the square root:

[tex]\[ 2 \sqrt{54} = 2 \times 3 \sqrt{6} = 6 \sqrt{6} \][/tex]

Therefore, the expression [tex]\(2 \sqrt{54}\)[/tex] simplifies to:

[tex]\[ 6 \sqrt{6} \][/tex]

Numerically, [tex]\( \sqrt{6} \approx 2.449 \)[/tex]. Hence, multiplying by 6:

[tex]\[ 6 \sqrt{6} \approx 6 \times 2.449 = 14.696938456699067 \][/tex]

So, the simplified and evaluated form of [tex]\(2 \sqrt{54}\)[/tex] is approximately [tex]\(14.696938456699067\)[/tex].