Finding the Domain of the Quotient of Functions

Given:
[tex]\[ f(x) = x \][/tex]
[tex]\[ g(x) = 1 \][/tex]

What is the domain of [tex]\(\left(\frac{g}{f}\right)(x)\)[/tex]?

A. [tex]\( x \neq 0 \)[/tex]
B. [tex]\( x \neq -1 \)[/tex]
C. All real numbers



Answer :

To find the domain of the quotient of functions [tex]\( \left(\frac{g}{f}\right)(x) \)[/tex], where [tex]\( f(x) = x \)[/tex] and [tex]\( g(x) = 1 \)[/tex], we need to ensure that the denominator [tex]\( f(x) \)[/tex] is not equal to zero.

Given:
- [tex]\( f(x) = x \)[/tex]
- [tex]\( g(x) = 1 \)[/tex]

The quotient function is:
[tex]\[ \left(\frac{g}{f}\right)(x) = \frac{1}{x} \][/tex]

For the quotient [tex]\( \frac{1}{x} \)[/tex] to be defined, the denominator [tex]\( x \)[/tex] must not be zero. Therefore, we exclude [tex]\( x = 0 \)[/tex] from the domain of the function.

Thus, the domain of [tex]\( \left(\frac{g}{f}\right)(x) \)[/tex] is all real numbers except zero. In mathematical notation, this can be written as:
[tex]\[ x \neq 0 \][/tex]

Therefore, the correct answer is:
[tex]\[ x \neq 0 \][/tex]