Answer :

Alright, let's solve the given system of equations step-by-step to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:

The system of equations is:

[tex]\[ \begin{cases} x - y = 1 \\ x + y = 5 \end{cases} \][/tex]

Step 1: Add the two equations

First, we add the two equations to eliminate [tex]\( y \)[/tex]:

[tex]\[ (x - y) + (x + y) = 1 + 5 \][/tex]

Simplify the left-hand side:

[tex]\[ x - y + x + y = 1 + 5 \][/tex]

The [tex]\( -y \)[/tex] and [tex]\( +y \)[/tex] terms cancel each other out:

[tex]\[ 2x = 6 \][/tex]

Step 2: Solve for [tex]\( x \)[/tex]

Divide both sides of the equation by 2 to solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{6}{2} = 3 \][/tex]

So, we have [tex]\( x = 3 \)[/tex].

Step 3: Substitute [tex]\( x \)[/tex] back into one of the original equations

Next, we substitute [tex]\( x = 3 \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]. Let's use [tex]\( x + y = 5 \)[/tex]:

[tex]\[ 3 + y = 5 \][/tex]

Step 4: Solve for [tex]\( y \)[/tex]

Subtract 3 from both sides to solve for [tex]\( y \)[/tex]:

[tex]\[ y = 5 - 3 = 2 \][/tex]

So, we have [tex]\( y = 2 \)[/tex].

Conclusion

The solution to the system of equations is:

[tex]\[ x = 3, \quad y = 2 \][/tex]