What is the equation of the line that goes through the points (-1, 3) and (0, 1)?

Write your answer as [tex] y = mx + b [/tex].

(Note: Only fill in the values for [tex] m [/tex] and [tex] b [/tex]; the [tex] x [/tex] and [tex] y [/tex] will remain in the equation.)



Answer :

Sure, let's find the equation of the line that passes through the points [tex]\((-1, 3)\)[/tex] and [tex]\((0, 1)\)[/tex].

1. Identify the coordinates:
- Point 1: [tex]\((x_1, y_1) = (-1, 3)\)[/tex]
- Point 2: [tex]\((x_2, y_2) = (0, 1)\)[/tex]

2. Calculate the slope [tex]\(m\)[/tex]:
The slope formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the values:
[tex]\[ m = \frac{1 - 3}{0 + 1} = \frac{-2}{1} = -2 \][/tex]

3. Find the y-intercept [tex]\(b\)[/tex]:
The y-intercept can be found using the point-slope form of the line equation [tex]\(y = mx + b\)[/tex]. Using point [tex]\((0, 1)\)[/tex], which lies on the y-axis:
[tex]\[ 1 = -2 \cdot 0 + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = 1 \][/tex]

4. Write the equation of the line:
Using the slope [tex]\(m = -2\)[/tex] and y-intercept [tex]\(b = 1\)[/tex], the equation of the line is:
[tex]\[ y = -2x + 1 \][/tex]

So, the required equation of the line is:

[tex]\[ y = -2x + 1 \][/tex]