Properties of Rational Exponents Quick Check

Using the properties of exponents, which expression is equivalent to [tex]x^{\frac{1}{6}} \cdot x^{\frac{1}{6}}[/tex]?

A. [tex]\frac{1}{\sqrt[3]{x}}[/tex]
B. [tex]\sqrt{x}[/tex]
C. [tex]\sqrt[3]{x}[/tex]
D. [tex]\sqrt[36]{x}[/tex]



Answer :

To solve the problem of finding an expression equivalent to [tex]\(x^{\frac{1}{6}} \cdot x^{\frac{1}{6}}\)[/tex], we need to use the properties of exponents.

### Step-by-Step Solution

1. Identify the exponents: We have two exponents that are both [tex]\(\frac{1}{6}\)[/tex].

[tex]\[ x^{\frac{1}{6}} \cdot x^{\frac{1}{6}} \][/tex]

2. Use the multiplication property of exponents: According to the properties of exponents, when multiplying terms with the same base, we add their exponents.

[tex]\[ x^{\frac{1}{6}} \cdot x^{\frac{1}{6}} = x^{\frac{1}{6} + \frac{1}{6}} \][/tex]

3. Add the exponents:

[tex]\[ \frac{1}{6} + \frac{1}{6} = \frac{2}{6} \][/tex]

4. Simplify the exponent:

[tex]\[ \frac{2}{6} = \frac{1}{3} \][/tex]

Thus, the expression simplifies to:

[tex]\[ x^{\frac{1}{3}} \][/tex]

5. Match the simplified expression with the given choices:
- [tex]\(\frac{1}{\sqrt[3]{x}}\)[/tex]
- [tex]\(\sqrt{x}\)[/tex]
- [tex]\(\sqrt[3]{x}\)[/tex]
- [tex]\(\sqrt[36]{x}\)[/tex]

The simplified expression [tex]\(x^{\frac{1}{3}}\)[/tex] matches the cube root of [tex]\(x\)[/tex]:

[tex]\[ x^{\frac{1}{3}} = \sqrt[3]{x} \][/tex]

### Conclusion

Therefore, the expression [tex]\(x^{\frac{1}{6}} \cdot x^{\frac{1}{6}}\)[/tex] is equivalent to:

[tex]\(\sqrt[3]{x}\)[/tex]

So, the correct option is:

[tex]\(\sqrt[3]{x}\)[/tex]