Using the properties of exponents, which expression is equivalent to [tex]\frac{x}{x^{\frac{3}{4}}}[/tex]?

A. [tex]\frac{1}{\sqrt[4]{x}}[/tex]
B. [tex]x[/tex]
C. [tex]x^4[/tex]
D. [tex]\sqrt[4]{x}[/tex]



Answer :

To simplify the expression [tex]\(\frac{x}{x^{\frac{3}{4}}}\)[/tex], we can use the properties of exponents. Here's a step-by-step solution:

1. Recall the property of exponents: [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex].

2. Apply this property to the expression [tex]\(\frac{x}{x^{\frac{3}{4}}}\)[/tex]:
[tex]\[ \frac{x}{x^{\frac{3}{4}}} = x^{1 - \frac{3}{4}} \][/tex]

3. Simplify the exponent:
[tex]\[ 1 - \frac{3}{4} = \frac{4}{4} - \frac{3}{4} = \frac{1}{4} \][/tex]

4. So, [tex]\(\frac{x}{x^{\frac{3}{4}}}\)[/tex] simplifies to:
[tex]\[ x^{\frac{1}{4}} \][/tex]

The expression [tex]\(x^{\frac{1}{4}}\)[/tex] is equivalent to [tex]\(\sqrt[4]{x}\)[/tex].

Therefore, the correct answer is:
[tex]\[ \sqrt[4]{x} \][/tex]