Question 7 of 10

For the function [tex]f(t) = P e^{rt}[/tex], if [tex]P = 8[/tex] and [tex]r = 0.08[/tex], then what is the value of [tex]f(8)[/tex] to the nearest tenth?

A. 15.2
B. 48.1
C. 0.2
D. 4814.8



Answer :

To solve for the value of [tex]\( f(t) \)[/tex] in the function [tex]\( f(t) = P e^{rt} \)[/tex], given the constants [tex]\( P = 8 \)[/tex], [tex]\( r = 0.08 \)[/tex], and time [tex]\( t = 8 \)[/tex], we follow these steps:

1. Identify the values provided:
- [tex]\( P = 8 \)[/tex]
- [tex]\( r = 0.08 \)[/tex]
- [tex]\( t = 8 \)[/tex]

2. Substitute these values into the function [tex]\( f(t) = P e^{rt} \)[/tex]:
[tex]\[ f(8) = 8 \cdot e^{0.08 \cdot 8} \][/tex]

3. Calculate the exponent:
[tex]\[ 0.08 \times 8 = 0.64 \][/tex]

4. Raise [tex]\( e \)[/tex] (Euler's number, approximately equal to 2.71828) to the power of 0.64:
[tex]\[ e^{0.64} \approx 1.896 \][/tex]

5. Multiply the result by [tex]\( P \)[/tex]:
[tex]\[ 8 \times 1.896 = 15.168 \][/tex]

6. Round the result to the nearest tenth:
[tex]\[ 15.168 \approx 15.2 \][/tex]

So, the value of [tex]\( f(8) \)[/tex] to the nearest tenth is [tex]\( 15.2 \)[/tex].

Therefore, the correct answer is:
A. 15.2