Answer :
To determine if the given table represents a function, we need to understand what defines a function in mathematical terms. A function is a relationship between two sets, typically called the domain (the set of inputs, often denoted as [tex]\( x \)[/tex]) and the range (the set of outputs, often denoted as [tex]\( y \)[/tex]), where each input [tex]\( x \)[/tex] is related to exactly one output [tex]\( y \)[/tex].
Let’s analyze the table:
[tex]\[ \begin{array}{|c|c|} \hline \text{Hours of Training} (x) & \text{Monthly Pay} (y) \\ \hline 10 & 1250 \\ \hline 20 & 1400 \\ \hline 30 & 1550 \\ \hline 40 & 1700 \\ \hline 50 & 1850 \\ \hline 60 & 2000 \\ \hline 70 & 2150 \\ \hline \end{array} \][/tex]
We need to check if each [tex]\( x \)[/tex]-value corresponds to exactly one [tex]\( y \)[/tex]-value:
- For [tex]\( x = 10 \)[/tex], [tex]\( y = 1250 \)[/tex]
- For [tex]\( x = 20 \)[/tex], [tex]\( y = 1400 \)[/tex]
- For [tex]\( x = 30 \)[/tex], [tex]\( y = 1550 \)[/tex]
- For [tex]\( x = 40 \)[/tex], [tex]\( y = 1700 \)[/tex]
- For [tex]\( x = 50 \)[/tex], [tex]\( y = 1850 \)[/tex]
- For [tex]\( x = 60 \)[/tex], [tex]\( y = 2000 \)[/tex]
- For [tex]\( x = 70 \)[/tex], [tex]\( y = 2150 \)[/tex]
From this analysis, it is evident that each distinct [tex]\( x \)[/tex]-value (hours of training) maps to exactly one unique [tex]\( y \)[/tex]-value (monthly pay).
According to the options given, the correct explanation is:
A. Yes, because every [tex]\( x \)[/tex]-value corresponds to exactly one [tex]\( y \)[/tex]-value.
Thus, the table indeed represents a function because for each input [tex]\( x \)[/tex] in the domain, there is a unique output [tex]\( y \)[/tex] in the range.
Let’s analyze the table:
[tex]\[ \begin{array}{|c|c|} \hline \text{Hours of Training} (x) & \text{Monthly Pay} (y) \\ \hline 10 & 1250 \\ \hline 20 & 1400 \\ \hline 30 & 1550 \\ \hline 40 & 1700 \\ \hline 50 & 1850 \\ \hline 60 & 2000 \\ \hline 70 & 2150 \\ \hline \end{array} \][/tex]
We need to check if each [tex]\( x \)[/tex]-value corresponds to exactly one [tex]\( y \)[/tex]-value:
- For [tex]\( x = 10 \)[/tex], [tex]\( y = 1250 \)[/tex]
- For [tex]\( x = 20 \)[/tex], [tex]\( y = 1400 \)[/tex]
- For [tex]\( x = 30 \)[/tex], [tex]\( y = 1550 \)[/tex]
- For [tex]\( x = 40 \)[/tex], [tex]\( y = 1700 \)[/tex]
- For [tex]\( x = 50 \)[/tex], [tex]\( y = 1850 \)[/tex]
- For [tex]\( x = 60 \)[/tex], [tex]\( y = 2000 \)[/tex]
- For [tex]\( x = 70 \)[/tex], [tex]\( y = 2150 \)[/tex]
From this analysis, it is evident that each distinct [tex]\( x \)[/tex]-value (hours of training) maps to exactly one unique [tex]\( y \)[/tex]-value (monthly pay).
According to the options given, the correct explanation is:
A. Yes, because every [tex]\( x \)[/tex]-value corresponds to exactly one [tex]\( y \)[/tex]-value.
Thus, the table indeed represents a function because for each input [tex]\( x \)[/tex] in the domain, there is a unique output [tex]\( y \)[/tex] in the range.