Does this table represent a function? Why or why not?

\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Hours of \\
Training
\end{tabular} & \begin{tabular}{c}
Monthly \\
Pay
\end{tabular} \\
\hline 10 & 1250 \\
\hline 20 & 1400 \\
\hline 30 & 1550 \\
\hline 40 & 1700 \\
\hline 50 & 1850 \\
\hline 60 & 2000 \\
\hline 70 & 2150 \\
\hline
\end{tabular}

A. Yes, because every [tex]$x$[/tex]-value corresponds to exactly one [tex]$y$[/tex]-value.
B. No, because each [tex]$x$[/tex]-value is different.
C. No, because none of the [tex]$y$[/tex]-values are the same.
D. Yes, because the [tex]$y$[/tex]-values are positive numbers.



Answer :

To determine if the given table represents a function, we need to understand what defines a function in mathematical terms. A function is a relationship between two sets, typically called the domain (the set of inputs, often denoted as [tex]\( x \)[/tex]) and the range (the set of outputs, often denoted as [tex]\( y \)[/tex]), where each input [tex]\( x \)[/tex] is related to exactly one output [tex]\( y \)[/tex].

Let’s analyze the table:

[tex]\[ \begin{array}{|c|c|} \hline \text{Hours of Training} (x) & \text{Monthly Pay} (y) \\ \hline 10 & 1250 \\ \hline 20 & 1400 \\ \hline 30 & 1550 \\ \hline 40 & 1700 \\ \hline 50 & 1850 \\ \hline 60 & 2000 \\ \hline 70 & 2150 \\ \hline \end{array} \][/tex]

We need to check if each [tex]\( x \)[/tex]-value corresponds to exactly one [tex]\( y \)[/tex]-value:
- For [tex]\( x = 10 \)[/tex], [tex]\( y = 1250 \)[/tex]
- For [tex]\( x = 20 \)[/tex], [tex]\( y = 1400 \)[/tex]
- For [tex]\( x = 30 \)[/tex], [tex]\( y = 1550 \)[/tex]
- For [tex]\( x = 40 \)[/tex], [tex]\( y = 1700 \)[/tex]
- For [tex]\( x = 50 \)[/tex], [tex]\( y = 1850 \)[/tex]
- For [tex]\( x = 60 \)[/tex], [tex]\( y = 2000 \)[/tex]
- For [tex]\( x = 70 \)[/tex], [tex]\( y = 2150 \)[/tex]

From this analysis, it is evident that each distinct [tex]\( x \)[/tex]-value (hours of training) maps to exactly one unique [tex]\( y \)[/tex]-value (monthly pay).

According to the options given, the correct explanation is:

A. Yes, because every [tex]\( x \)[/tex]-value corresponds to exactly one [tex]\( y \)[/tex]-value.

Thus, the table indeed represents a function because for each input [tex]\( x \)[/tex] in the domain, there is a unique output [tex]\( y \)[/tex] in the range.