Use substitution to solve the system.

[tex]\[
\begin{aligned}
3x + 5y & = 1 \\
y & = 2x - 5
\end{aligned}
\][/tex]

[tex]\[
\begin{aligned}
x & = 2 \\
y & = -1
\end{aligned}
\][/tex]



Answer :

Sure, I'll provide a step-by-step solution using substitution to solve the given system of equations. We have the following system:

[tex]\[ \begin{aligned} 3x + 5y &= 1 \quad \text{(Equation 1)} \\ y &= 2x - 5 \quad \text{(Equation 2)} \end{aligned} \][/tex]

### Step 1: Substitute Equation 2 into Equation 1
First, we substitute the expression for [tex]\( y \)[/tex] from Equation 2 into Equation 1.

Given:
[tex]\[ y = 2x - 5 \][/tex]

Substitute [tex]\( y = 2x - 5 \)[/tex] into [tex]\( 3x + 5y = 1 \)[/tex]:

[tex]\[ 3x + 5(2x - 5) = 1 \][/tex]

### Step 2: Simplify the Equation
Now, solve for [tex]\( x \)[/tex]:

[tex]\[ 3x + 10x - 25 = 1 \][/tex]
Combine like terms:

[tex]\[ 13x - 25 = 1 \][/tex]
Add 25 to both sides to isolate the term with [tex]\( x \)[/tex]:

[tex]\[ 13x - 25 + 25 = 1 + 25 \implies 13x = 26 \][/tex]
Solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{26}{13} \implies x = 2 \][/tex]

### Step 3: Substitute [tex]\( x \)[/tex] back into Equation 2
Now that we have [tex]\( x = 2 \)[/tex], substitute this value back into Equation 2 to find [tex]\( y \)[/tex]:

[tex]\[ y = 2(2) - 5 \][/tex]
Calculate [tex]\( y \)[/tex]:

[tex]\[ y = 4 - 5 \implies y = -1 \][/tex]

### Conclusion
The solution to the system of equations is:

[tex]\[ \boxed{x = 2, \; y = -1} \][/tex]