Calculate the ratios in the last three columns, round to 3 decimal places, and enter the result in the table.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Triangle & Hypotenuse & Opposite & Adjacent & \text{opp/hyp} & \text{adj/hyp} & \text{opp/adj} \\
\hline
1 & 2.742 & 0.4761433 & 2.7003429 & & & \\
\hline
2 & 2.742 & 0.70968182 & 2.6485686 & & & \\
\hline
3 & 2.742 & 0.93781923 & 2.5766372 & & & \\
\hline
4 & 2.742 & 1.1588193 & 2.485096 & & & \\
\hline
5 & 2.742 & 1.5727466 & 2.2461149 & & & \\
\hline
\end{tabular}
\][/tex]



Answer :

Sure, let's populate the table by calculating the ratios for each triangle and rounding them to 3 decimal places.

Starting with Triangle 1:
- [tex]\(\text{Hypotenuse} = 2.742\)[/tex]
- [tex]\(\text{Opposite} = 0.4761433\)[/tex]
- [tex]\(\text{Adjacent} = 2.7003429\)[/tex]

Calculations:
- [tex]\(\text{opp/hyp} = \frac{0.4761433}{2.742} = 0.174\)[/tex]
- [tex]\(\text{adj/hyp} = \frac{2.7003429}{2.742} = 0.985\)[/tex]
- [tex]\(\text{opp/adj} = \frac{0.4761433}{2.7003429} = 0.176\)[/tex]

Triangle 2:
- [tex]\(\text{Hypotenuse} = 2.742\)[/tex]
- [tex]\(\text{Opposite} = 0.70968182\)[/tex]
- [tex]\(\text{Adjacent} = 2.6485686\)[/tex]

Calculations:
- [tex]\(\text{opp/hyp} = \frac{0.70968182}{2.742} = 0.259\)[/tex]
- [tex]\(\text{adj/hyp} = \frac{2.6485686}{2.742} = 0.966\)[/tex]
- [tex]\(\text{opp/adj} = \frac{0.70968182}{2.6485686} = 0.268\)[/tex]

Triangle 3:
- [tex]\(\text{Hypotenuse} = 2.742\)[/tex]
- [tex]\(\text{Opposite} = 0.93781923\)[/tex]
- [tex]\(\text{Adjacent} = 2.5766372\)[/tex]

Calculations:
- [tex]\(\text{opp/hyp} = \frac{0.93781923}{2.742} = 0.342\)[/tex]
- [tex]\(\text{adj/hyp} = \frac{2.5766372}{2.742} = 0.94\)[/tex]
- [tex]\(\text{opp/adj} = \frac{0.93781923}{2.5766372} = 0.364\)[/tex]

Triangle 4:
- [tex]\(\text{Hypotenuse} = 2.742\)[/tex]
- [tex]\(\text{Opposite} = 1.1588193\)[/tex]
- [tex]\(\text{Adjacent} = 2.485096\)[/tex]

Calculations:
- [tex]\(\text{opp/hyp} = \frac{1.1588193}{2.742} = 0.423\)[/tex]
- [tex]\(\text{adj/hyp} = \frac{2.485096}{2.742} = 0.906\)[/tex]
- [tex]\(\text{opp/adj} = \frac{1.1588193}{2.485096} = 0.466\)[/tex]

Triangle 5:
- [tex]\(\text{Hypotenuse} = 2.742\)[/tex]
- [tex]\(\text{Opposite} = 1.5727466\)[/tex]
- [tex]\(\text{Adjacent} = 2.2461149\)[/tex]

Calculations:
- [tex]\(\text{opp/hyp} = \frac{1.5727466}{2.742} = 0.574\)[/tex]
- [tex]\(\text{adj/hyp} = \frac{2.2461149}{2.742} = 0.819\)[/tex]
- [tex]\(\text{opp/adj} = \frac{1.5727466}{2.2461149} = 0.7\)[/tex]

Here is the completed table:

[tex]\[ \begin{tabular}{|c|c|c|c|c|c|c|} \hline Triangle & Hypotenuse & Opposite & Adjacent & opp/hyp & adj/hyp & opp/adj \\ \hline 1 & 2.742 & 0.4761433 & 2.7003429 & 0.174 & 0.985 & 0.176 \\ \hline 2 & 2.742 & 0.70968182 & 2.6485686 & 0.259 & 0.966 & 0.268 \\ \hline 3 & 2.742 & 0.93781923 & 2.5766372 & 0.342 & 0.94 & 0.364 \\ \hline 4 & 2.742 & 1.1588193 & 2.485096 & 0.423 & 0.906 & 0.466 \\ \hline 5 & 2.742 & 1.5727466 & 2.2461149 & 0.574 & 0.819 & 0.7 \\ \hline \end{tabular} \][/tex]