Simplify the expression so there is only one positive power for each base.

[tex]\left(5^{-2} \cdot 4^{-4}\right)^{-2}[/tex]

A. [tex]5^4 \cdot 4^8[/tex]

B. [tex]\frac{1}{5^{+} \cdot 4^6}[/tex]

C. [tex]\frac{1}{5^4 \cdot 4^6}[/tex]

D. [tex]5^4 \cdot 4^6[/tex]



Answer :

To simplify the expression [tex]\(\left(5^{-2} \cdot 4^{-4}\right)^{-2}\)[/tex], let's follow a step-by-step approach.

### Step 1: Distribute the Outer Exponent

The given expression is [tex]\(\left(5^{-2} \cdot 4^{-4}\right)^{-2}\)[/tex].

We need to distribute the outer exponent [tex]\(-2\)[/tex] to each base inside the parentheses:

[tex]\[ \left(5^{-2}\right)^{-2} \cdot \left(4^{-4}\right)^{-2} \][/tex]

### Step 2: Apply the Power Rule

When raising a power to another power, you multiply the exponents. Therefore, we apply this rule to both terms:

[tex]\[ (5^{-2})^{-2} = 5^{(-2) \cdot (-2)} = 5^{4} \][/tex]

[tex]\[ (4^{-4})^{-2} = 4^{(-4) \cdot (-2)} = 4^{8} \][/tex]

### Step 3: Combine the Results

Now, we combine these simplified terms:

[tex]\[ 5^4 \cdot 4^8 \][/tex]

Thus, the expression [tex]\(\left(5^{-2} \cdot 4^{-4}\right)^{-2}\)[/tex] simplifies to:

[tex]\[ \boxed{5^4 \cdot 4^8} \][/tex]

So, the correct answer is:

A. [tex]\(5^4 \cdot 4^8\)[/tex]