Sara goes on a slingshot ride in an amusement park. She is strapped into a spherical ball that has a radius of [tex]3 \cdot 10^2[/tex] centimeters. What is the volume of air in the spherical ball? Use the formula for the volume of a sphere [tex]V = \frac{4}{3} \pi r^3[/tex], where [tex]r[/tex] is the sphere's radius.

A. [tex]4 \cdot \pi \cdot 3^2 \cdot 10^6 \, cm^3[/tex]
B. [tex]4 \cdot \pi \cdot 3^3 \cdot 10^6 \, cm^3[/tex]
C. [tex]4 \cdot \pi \cdot 3^2 \cdot 10^5 \, cm^3[/tex]
D. [tex]4 \cdot \pi \cdot 3^4 \cdot 10^5 \, cm^3[/tex]



Answer :

To determine the volume of the spherical ball in which Sara is strapped, we use the volume formula for a sphere:

[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]

Here, [tex]\( r \)[/tex] is the radius of the sphere.

Given:
[tex]\[ r = 3 \cdot 10^2 \ \text{cm} \][/tex]

Now, substitute [tex]\( r \)[/tex] into the volume formula:

[tex]\[ V = \frac{4}{3} \pi (3 \cdot 10^2)^3 \][/tex]

Calculate the term inside the parentheses first:

[tex]\[ (3 \cdot 10^2)^3 = 3^3 \cdot (10^2)^3 \][/tex]

[tex]\[ 3^3 = 27 \][/tex]

[tex]\[ (10^2)^3 = 10^{6} \][/tex]

So,

[tex]\[ (3 \cdot 10^2)^3 = 27 \cdot 10^6 \][/tex]

Next, substitute this back into the formula for volume:

[tex]\[ V = \frac{4}{3} \pi \cdot 27 \cdot 10^6 \][/tex]

[tex]\[ V = \frac{4 \cdot 27 \cdot \pi \cdot 10^6}{3} \][/tex]

[tex]\[ V = \frac{108 \cdot \pi \cdot 10^6}{3} \][/tex]

[tex]\[ V = 36 \cdot \pi \cdot 10^6 \][/tex]

We can now match this result with the provided options. The correct option is:

[tex]\[ B. \ 4 \cdot \pi \cdot 3^3 \cdot 10^6 \ \text{cm}^3 \][/tex]

Thus, the volume of the air in the spherical ball is given by option B:

[tex]\[ 4 \cdot \pi \cdot 3^3 \cdot 10^6 \ \text{cm}^3 \][/tex]