Which expressions are equal to [tex]\frac{6^3 \cdot 2^5}{2^3}[/tex]?

A. [tex]2^3 \cdot 3^3[/tex]
B. [tex]12^3[/tex]
C. [tex]6^3[/tex]
D. [tex]12^6[/tex]
E. [tex]2^6 \cdot 3^3[/tex]



Answer :

Let's simplify the given expression step by step and then compare it with the choices provided.

The given expression is:
[tex]\[ \frac{6^3 \cdot 2^5}{2^3} \][/tex]

### Step-by-Step Simplification
1. Simplify [tex]\(6^3\)[/tex]:
Notice that [tex]\(6 = 2 \cdot 3\)[/tex]. So,
[tex]\[ 6^3 = (2 \cdot 3)^3 = 2^3 \cdot 3^3 \][/tex]

2. Substitute [tex]\(6^3\)[/tex] back into the expression:
[tex]\[ \frac{6^3 \cdot 2^5}{2^3} = \frac{(2^3 \cdot 3^3) \cdot 2^5}{2^3} \][/tex]

3. Combine the powers of 2:
Since we have [tex]\(2^3 \cdot 2^5\)[/tex] in the numerator,
[tex]\[ 2^3 \cdot 2^5 = 2^{3+5} = 2^8 \][/tex]
So now the expression becomes:
[tex]\[ \frac{2^8 \cdot 3^3}{2^3} \][/tex]

4. Simplify the fraction:
[tex]\[ \frac{2^8 \cdot 3^3}{2^3} = 2^{8-3} \cdot 3^3 = 2^5 \cdot 3^3 \][/tex]

Now, the simplified form of the expression is:
[tex]\[ 2^5 \cdot 3^3 \][/tex]

### Comparing with Provided Choices
Let's check if any of the provided choices match [tex]\(2^5 \cdot 3^3\)[/tex]:

1. Choice: [tex]\(2^3 \cdot 3^3\)[/tex]:
[tex]\[ 2^3 \cdot 3^3 = 8 \cdot 27 = 216 \][/tex]
This is not equal to [tex]\(2^5 \cdot 3^3\)[/tex].

2. Choice: [tex]\(12^3\)[/tex]:
[tex]\[ 12^3 = 1728 \][/tex]
This is not equal to [tex]\(2^5 \cdot 3^3\)[/tex].

3. Choice: [tex]\(6^3\)[/tex]:
[tex]\[ 6^3 = 216 \][/tex]
This is not equal to [tex]\(2^5 \cdot 3^3\)[/tex].

4. Choice: [tex]\(12^6\)[/tex]:
[tex]\[ 12^6 = 2985984 \][/tex]
This is not equal to [tex]\(2^5 \cdot 3^3\)[/tex].

5. Choice: [tex]\(2^6 \cdot 3^3\)[/tex]:
[tex]\[ 2^6 \cdot 3^3 = 64 \cdot 27 = 1728 \][/tex]
This is not equal to [tex]\(2^5 \cdot 3^3\)[/tex].

After evaluating all the choices, none of the given expressions match the simplified form [tex]\(2^5 \cdot 3^3\)[/tex]. Hence, none of the provided choices are equal to [tex]\(\frac{6^3 \cdot 2^5}{2^3}\)[/tex].