Drag each tile to the correct location on the table. Each tile can be used more than once, but not all tiles will be used.

Choose the justification for each step in the solution to the given equation.

- multiplication property of equality
- subtraction property of equality
- addition property of equality
- simplification
- division property of equality

\begin{tabular}{|c|l|}
\hline
Step & Justification \\
\hline
[tex]$\frac{17}{3}-\frac{3}{4} x=\frac{1}{2} x+5$[/tex] & \\
\hline
[tex]$\frac{17}{3}-\frac{3}{4} x-\frac{17}{3}=\frac{1}{2} x+5-\frac{17}{3}$[/tex] & \\
\hline
[tex]$-\frac{3}{4} x=\frac{1}{2} x-\frac{2}{3}$[/tex] & \\
\hline
[tex]$-\frac{3}{4} x-\frac{1}{2} x=\frac{1}{2} x-\frac{2}{3}-\frac{1}{2} x$[/tex] & \\
\hline
[tex]$-\frac{5}{4} x=-\frac{2}{3}$[/tex] & \\
\hline
[tex]$x=\frac{8}{15}$[/tex] & \\
\hline
\end{tabular}



Answer :

Let's work through the steps given, providing the correct justifications for each.

### Step-by-Step Solution:

1. Equation Given:
[tex]\[ \frac{17}{3}-\frac{3}{4} x = \frac{1}{2} x + 5 \][/tex]

2. Step 1: Move the constant term [tex]\(\frac{17}{3}\)[/tex] to the right side.
[tex]\[ \frac{17}{3}-\frac{3}{4} x-\frac{17}{3}=\frac{1}{2} x+5-\frac{17}{3} \][/tex]
- Justification: Subtraction property of equality

3. Step 2: Simplify both sides.
[tex]\[ -\frac{3}{4} x = \frac{1}{2} x - \frac{2}{3} \][/tex]
- Justification: Simplification

4. Step 3: Eliminate the variable term [tex]\(\frac{1}{2} x\)[/tex] on the right side.
[tex]\[ -\frac{3}{4} x - \frac{1}{2} x = \frac{1}{2} x - \frac{2}{3} - \frac{1}{2} x \][/tex]
- Justification: Subtraction property of equality

5. Simplified Result: (Exact expression not given, assuming this step involves further simplification)
- Justification: Simplification

### Filling in the Table:

\begin{tabular}{|c|l|}
\hline
\textbf{Step} & \textbf{Justification} \\
\hline
[tex]$\frac{17}{3}-\frac{3}{4} x=\frac{1}{2} x+5$[/tex] & Given equation \\
\hline
[tex]$\frac{17}{3}-\frac{3}{4} x-\frac{17}{3}=\frac{1}{2} x+5-\frac{17}{3}$[/tex] & Subtraction property of equality \\
\hline
[tex]$-\frac{3}{4} x=\frac{1}{2} x-\frac{2}{3}$[/tex] & Simplification \\
\hline
[tex]$-\frac{3}{4} x-\frac{1}{2} x=\frac{1}{2} x-\frac{2}{3}-\frac{1}{2} x$[/tex] & Subtraction property of equality \\
\hline
\text{Simplified result here} & Simplification \\
\hline
\end{tabular}

In summary:
1. The subtraction property of equality is used to move terms across the equation.
2. Simplification combines like terms or simplifies expressions on each side of the equation.

Following these steps, we can systematically solve the given equation or verify the given steps as correct.