Answer :

Let's delve into solving the problem of finding [tex]\( i^{79} \)[/tex], where [tex]\( i \)[/tex] is the imaginary unit defined by the property [tex]\( i^2 = -1 \)[/tex].

Here’s a step-by-step breakdown:

1. Understand the Powers of [tex]\( i \)[/tex]:
The powers of [tex]\( i \)[/tex] follow a cyclical pattern every four exponents:
[tex]\[ \begin{aligned} i^1 & = i, \\ i^2 & = -1, \\ i^3 & = -i, \\ i^4 & = 1, \\ i^5 & = i, \\ \end{aligned} \][/tex]
and this pattern repeats every four exponents.

2. Determine the Remainder When Dividing by 4:
Since the powers of [tex]\( i \)[/tex] cycle every four, we can determine the position within the cycle of [tex]\( i^{79} \)[/tex] by calculating [tex]\( 79 \mod 4 \)[/tex]:
[tex]\[ 79 \div 4 = 19 \text{ remainder } 3 \][/tex]
Thus,
[tex]\[ 79 \equiv 3 \pmod{4} \][/tex]

3. Find [tex]\( i^{79} \)[/tex] in the Cycle:
From the cyclic pattern, we see:
[tex]\[ \begin{aligned} i^3 & = -i \\ \end{aligned} \][/tex]
Since [tex]\( 79 \mod 4 = 3 \)[/tex], it follows that:
[tex]\[ i^{79} = i^3 = -i \][/tex]

So, based on the cyclic nature of powers of [tex]\( i \)[/tex], the value of [tex]\( i^{79} \)[/tex] is [tex]\(-i\)[/tex].

The correct answer is [tex]\( -i \)[/tex]. Thus, the corresponding answer choice is:
[tex]\[ \boxed{2} \][/tex]