Which expression is equal to [tex]-3i(4-2i)[/tex]?

A. [tex]-6 - 12i[/tex]
B. [tex]-12 - 6i[/tex]
C. [tex]-6i[/tex]
D. [tex]6 - 12i[/tex]



Answer :

To determine which expression is equal to [tex]\(-3i(4 - 2i)\)[/tex], we need to simplify the given expression step by step.

1. Use the distributive property to expand the expression:
[tex]\[ -3i(4 - 2i) = (-3i \cdot 4) + (-3i \cdot -2i) \][/tex]

2. Multiply each term inside the parentheses:
[tex]\[ -3i \cdot 4 = -12i \][/tex]
[tex]\[ -3i \cdot -2i = 6i^2 \][/tex]

3. Recall that [tex]\( i^2 = -1 \)[/tex]:
[tex]\[ 6i^2 = 6 \cdot (-1) = -6 \][/tex]

4. Combine the real and imaginary parts:
[tex]\[ -12i + (-6) = -12i - 6 \][/tex]

Therefore, the expression [tex]\(-3i(4 - 2i)\)[/tex] simplifies to [tex]\(-12i - 6\)[/tex].

So, the equivalent expression is:
[tex]\[ -12 - 6i \][/tex]

Thus, the correct option is:
[tex]\[ \boxed{-12 - 6i} \][/tex]