If [tex]f(x) = 3x[/tex] and [tex]g(x) = \frac{1}{3}x[/tex], which expression could be used to verify that [tex]g(x)[/tex] is the inverse of [tex]f(x)[/tex]?

A. [tex]3x\left(\frac{x}{3}\right)[/tex]
B. [tex]\left(\frac{1}{3} x\right)(3x)[/tex]
C. [tex]\frac{1}{3}(3x)[/tex]
D. [tex]\frac{1}{3}\left(\frac{1}{3} \pi\right)[/tex]



Answer :

To verify that [tex]\( g(x) = \frac{1}{3} x \)[/tex] is the inverse of [tex]\( f(x) = 3x \)[/tex], we need to verify the compositions [tex]\( f(g(x)) \)[/tex] and [tex]\( g(f(x)) \)[/tex]:

1. Finding [tex]\( f(g(x)) \)[/tex]:

[tex]\[ \begin{aligned} g(x) &= \frac{1}{3} x, \\ f(g(x)) &= f\left( \frac{1}{3} x \right). \end{aligned} \][/tex]

Since [tex]\( f(x) = 3x \)[/tex]:

[tex]\[ f\left( \frac{1}{3} x \right) = 3 \left( \frac{1}{3} x \right). \][/tex]

Simplify the expression inside the function:

[tex]\[ 3 \left( \frac{1}{3} x \right) = x. \][/tex]

So, [tex]\( f(g(x)) = x \)[/tex].

2. Finding [tex]\( g(f(x)) \)[/tex]:

[tex]\[ \begin{aligned} f(x) &= 3x, \\ g(f(x)) &= g(3x). \end{aligned} \][/tex]

Since [tex]\( g(x) = \frac{1}{3} x \)[/tex]:

[tex]\[ g(3x) = \frac{1}{3} (3x). \][/tex]

Simplify the expression inside the function:

[tex]\[ \frac{1}{3} (3x) = x. \][/tex]

So, [tex]\( g(f(x)) = x \)[/tex].

Both compositions [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = x \)[/tex] hold true, confirming that [tex]\( g(x) \)[/tex] is indeed the inverse of [tex]\( f(x) \)[/tex].

Now let's match the choices given with our findings:

1. [tex]\( 3 x \left( \frac{x}{3} \right) \)[/tex]

This translates to:

[tex]\[ 3 x \left( \frac{x}{3} \right) = x \cdot x = x^2, \][/tex]

which is not what we are looking for.

2. [tex]\( \left( \frac{1}{3} x \right)(3 x) \)[/tex]

This translates to:

[tex]\[ \left( \frac{1}{3} x \right)(3 x) = \frac{1}{3} x \cdot 3 x = x^2, \][/tex]

which is also not correct.

3. [tex]\( \frac{1}{3}(3 x) \)[/tex]

This translates to:

[tex]\[ \frac{1}{3} (3 x) = x, \][/tex]

which matches one of our findings and verifies the inverse relationship.

4. [tex]\( \frac{1}{3} \left( \frac{1}{3} \pi \right) \)[/tex]

This is not relevant to the problem, as it uses [tex]\(\pi\)[/tex] which is not part of our original functions.

The correct expression that verifies [tex]\( g(x) \)[/tex] is the inverse of [tex]\( f(x) \)[/tex] is:

[tex]\[ \boxed{\frac{1}{3}(3 x)} \][/tex]