Which expression is equal to [tex]$(3x-4)(2x-5)$[/tex]?

A. [tex]$6x^2-7x+20$[/tex]
B. [tex][tex]$6x^2-23x+20$[/tex][/tex]
C. [tex]$6x^2-23x-20$[/tex]
D. [tex]$3x^2-23x-20$[/tex]



Answer :

To find which expression is equal to [tex]\((3x - 4)(2x - 5)\)[/tex], we will expand the given expression step-by-step.

Step 1: Expand [tex]\((3x - 4)(2x - 5)\)[/tex] using the distributive property (also known as the FOIL method for binomials). This method requires multiplying each term in the first binomial by each term in the second binomial.

[tex]\[ (3x - 4)(2x - 5) = 3x \cdot 2x + 3x \cdot (-5) + (-4) \cdot 2x + (-4) \cdot (-5) \][/tex]

Step 2: Perform the multiplications:

1. [tex]\(3x \cdot 2x = 6x^2\)[/tex]
2. [tex]\(3x \cdot (-5) = -15x\)[/tex]
3. [tex]\((-4) \cdot 2x = -8x\)[/tex]
4. [tex]\((-4) \cdot (-5) = 20\)[/tex]

Step 3: Add all the resultant terms together:

[tex]\[ 6x^2 - 15x - 8x + 20 \][/tex]

Step 4: Combine the like terms:

[tex]\[ 6x^2 - (15x + 8x) + 20 = 6x^2 - 23x + 20 \][/tex]

Therefore, the expression [tex]\((3x - 4)(2x - 5)\)[/tex] simplifies to [tex]\(6x^2 - 23x + 20\)[/tex], which matches the second option.

Thus, the correct answer is:

[tex]\[ 6 x^2 - 23 x + 20 \][/tex]