Find all the zeros of [tex]$f(x)$[/tex].

[tex]f(x) = x^4 + 16x^3 + 47x^2 - 100x - 132[/tex]

Arrange your answers from smallest to largest. If there is a double root, list it twice.

[tex]x = [?][/tex]

[tex]\square[/tex]

[tex]\square[/tex]

[tex]\square[/tex]

[tex]\square[/tex]



Answer :

To find the zeros of the polynomial function [tex]\( f(x) = x^4 + 16x^3 + 47x^2 - 100x - 132 \)[/tex], you need to solve the equation [tex]\( f(x) = 0 \)[/tex]. Here are the steps:

1. Write down the polynomial equation:
[tex]\[ x^4 + 16x^3 + 47x^2 - 100x - 132 = 0 \][/tex]

2. Find the roots (zeros) of this polynomial equation. After solving the equation, the zeros obtained are:
[tex]\[ x = -11, -6, -1, 2 \][/tex]

3. Arrange the zeros from the smallest to largest:
[tex]\[ x = [-11, -6, -1, 2] \][/tex]

So, the ordered list of zeros is:
[tex]\[ \boxed{-11}, \boxed{-6}, \boxed{-1}, \boxed{2} \][/tex]