Answer :
To write the system of linear equations represented by the given augmented matrix, we will translate each row into an equation. The variables used will be [tex]\( w, x, y, \)[/tex] and [tex]\( z \)[/tex].
Given the augmented matrix:
[tex]\[ \left[\begin{array}{rrrr|r} 1 & -2 & 4 & 3 & 10 \\ 0 & 1 & 4 & 0 & 14 \\ 0 & 0 & 1 & -1 & 3 \\ 1 & -2 & 0 & 0 & -2 \end{array}\right] \][/tex]
### First Row:
The first row is [tex]\([1, -2, 4, 3 | 10]\)[/tex]. This translates to the linear equation:
[tex]\[ 1w - 2x + 4y + 3z = 10 \][/tex]
So the equation represented by the first row is:
[tex]\[ w - 2x + 4y + 3z = 10 \][/tex]
### Second Row:
The second row is [tex]\([0, 1, 4, 0 | 14]\)[/tex]. This translates to the linear equation:
[tex]\[ 0w + 1x + 4y + 0z = 14 \][/tex]
Simplifying this, we get:
[tex]\[ x + 4y = 14 \][/tex]
### Third Row:
The third row is [tex]\([0, 0, 1, -1 | 3]\)[/tex]. This translates to the linear equation:
[tex]\[ 0w + 0x + 1y - 1z = 3 \][/tex]
Simplifying this, we get:
[tex]\[ y - z = 3 \][/tex]
### Fourth Row:
The fourth row is [tex]\([1, -2, 0, 0 | -2]\)[/tex]. This translates to the linear equation:
[tex]\[ 1w - 2x + 0y + 0z = -2 \][/tex]
Simplifying this, we get:
[tex]\[ w - 2x = -2 \][/tex]
Therefore, the system of linear equations represented by the given augmented matrix is:
[tex]\[ \begin{cases} w - 2x + 4y + 3z = 10 \\ x + 4y = 14 \\ y - z = 3 \\ w - 2x = -2 \end{cases} \][/tex]
Given the augmented matrix:
[tex]\[ \left[\begin{array}{rrrr|r} 1 & -2 & 4 & 3 & 10 \\ 0 & 1 & 4 & 0 & 14 \\ 0 & 0 & 1 & -1 & 3 \\ 1 & -2 & 0 & 0 & -2 \end{array}\right] \][/tex]
### First Row:
The first row is [tex]\([1, -2, 4, 3 | 10]\)[/tex]. This translates to the linear equation:
[tex]\[ 1w - 2x + 4y + 3z = 10 \][/tex]
So the equation represented by the first row is:
[tex]\[ w - 2x + 4y + 3z = 10 \][/tex]
### Second Row:
The second row is [tex]\([0, 1, 4, 0 | 14]\)[/tex]. This translates to the linear equation:
[tex]\[ 0w + 1x + 4y + 0z = 14 \][/tex]
Simplifying this, we get:
[tex]\[ x + 4y = 14 \][/tex]
### Third Row:
The third row is [tex]\([0, 0, 1, -1 | 3]\)[/tex]. This translates to the linear equation:
[tex]\[ 0w + 0x + 1y - 1z = 3 \][/tex]
Simplifying this, we get:
[tex]\[ y - z = 3 \][/tex]
### Fourth Row:
The fourth row is [tex]\([1, -2, 0, 0 | -2]\)[/tex]. This translates to the linear equation:
[tex]\[ 1w - 2x + 0y + 0z = -2 \][/tex]
Simplifying this, we get:
[tex]\[ w - 2x = -2 \][/tex]
Therefore, the system of linear equations represented by the given augmented matrix is:
[tex]\[ \begin{cases} w - 2x + 4y + 3z = 10 \\ x + 4y = 14 \\ y - z = 3 \\ w - 2x = -2 \end{cases} \][/tex]