Answer :
Sure! Let's go through the steps to simplify the given expression:
[tex]\[ \frac{1}{2} - 3\left(\frac{1}{2} + 1\right)^2 \][/tex]
### Step 1: Simplify inside the parenthesis
First, simplify the expression inside the parenthesis:
[tex]\[ \frac{1}{2} + 1 \][/tex]
To add these fractions, we need a common denominator. We can rewrite [tex]\(1\)[/tex] as [tex]\(\frac{2}{2}\)[/tex]:
[tex]\[ \frac{1}{2} + \frac{2}{2} = \frac{3}{2} \][/tex]
### Step 2: Square the simplified inner parenthesis
Next, we square the result from the first step:
[tex]\[ \left(\frac{3}{2}\right)^2 \][/tex]
Squaring a fraction means squaring the numerator and the denominator:
[tex]\[ \left(\frac{3}{2}\right)^2 = \frac{3^2}{2^2} = \frac{9}{4} \][/tex]
### Step 3: Multiply by -3
Now, multiply the squared term by 3:
[tex]\[ 3 \times \frac{9}{4} \][/tex]
This can be done by multiplying the numerator:
[tex]\[ 3 \times \frac{9}{4} = \frac{27}{4} \][/tex]
### Step 4: Subtract from [tex]\(\frac{1}{2}\)[/tex]
Finally, subtract this result from [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \frac{1}{2} - \frac{27}{4} \][/tex]
First, rewrite [tex]\(\frac{1}{2}\)[/tex] with the same denominator as [tex]\(\frac{27}{4}\)[/tex]:
[tex]\[ \frac{1}{2} = \frac{2}{4} \][/tex]
Now we have:
[tex]\[ \frac{2}{4} - \frac{27}{4} = \frac{2 - 27}{4} = \frac{-25}{4} \][/tex]
So, the simplified form of the expression is:
[tex]\[ \boxed{\frac{-25}{4}} \][/tex]
[tex]\[ \frac{1}{2} - 3\left(\frac{1}{2} + 1\right)^2 \][/tex]
### Step 1: Simplify inside the parenthesis
First, simplify the expression inside the parenthesis:
[tex]\[ \frac{1}{2} + 1 \][/tex]
To add these fractions, we need a common denominator. We can rewrite [tex]\(1\)[/tex] as [tex]\(\frac{2}{2}\)[/tex]:
[tex]\[ \frac{1}{2} + \frac{2}{2} = \frac{3}{2} \][/tex]
### Step 2: Square the simplified inner parenthesis
Next, we square the result from the first step:
[tex]\[ \left(\frac{3}{2}\right)^2 \][/tex]
Squaring a fraction means squaring the numerator and the denominator:
[tex]\[ \left(\frac{3}{2}\right)^2 = \frac{3^2}{2^2} = \frac{9}{4} \][/tex]
### Step 3: Multiply by -3
Now, multiply the squared term by 3:
[tex]\[ 3 \times \frac{9}{4} \][/tex]
This can be done by multiplying the numerator:
[tex]\[ 3 \times \frac{9}{4} = \frac{27}{4} \][/tex]
### Step 4: Subtract from [tex]\(\frac{1}{2}\)[/tex]
Finally, subtract this result from [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \frac{1}{2} - \frac{27}{4} \][/tex]
First, rewrite [tex]\(\frac{1}{2}\)[/tex] with the same denominator as [tex]\(\frac{27}{4}\)[/tex]:
[tex]\[ \frac{1}{2} = \frac{2}{4} \][/tex]
Now we have:
[tex]\[ \frac{2}{4} - \frac{27}{4} = \frac{2 - 27}{4} = \frac{-25}{4} \][/tex]
So, the simplified form of the expression is:
[tex]\[ \boxed{\frac{-25}{4}} \][/tex]