Select the correct answer.

Rewrite the expression using only positive integer exponents:

[tex]\[ \left(m^{\frac{2}{3}} n^{-\frac{1}{3}}\right)^6 \][/tex]

A. [tex]\(\frac{n^2}{m^4}\)[/tex]
B. [tex]\(\frac{n^{18}}{m^9}\)[/tex]
C. [tex]\(\frac{m^9}{n^{18}}\)[/tex]
D. [tex]\(\frac{m^4}{n^2}\)[/tex]



Answer :

To simplify the expression [tex]\(\left(m^{\frac{2}{3}} n^{-\frac{1}{3}}\right)^6\)[/tex] and rewrite it using only positive integer exponents, we'll follow these steps:

1. Distribute the exponent 6 to each term inside the parentheses:
The general rule for exponents when dealing with multiplication inside parentheses is [tex]\((a \cdot b)^n = a^n \cdot b^n\)[/tex]. Applying this rule, we get:
[tex]\[ \left(m^{\frac{2}{3}} n^{-\frac{1}{3}}\right)^6 = \left(m^{\frac{2}{3}}\right)^6 \cdot \left(n^{-\frac{1}{3}}\right)^6 \][/tex]

2. Multiply the exponents:
To simplify each term, we multiply the exponents. For [tex]\(m^{\frac{2}{3}}\)[/tex]:
[tex]\[ \left(m^{\frac{2}{3}}\right)^6 = m^{\frac{2}{3} \cdot 6} = m^{\frac{12}{3}} = m^4 \][/tex]

Similarly, for [tex]\(n^{-\frac{1}{3}}\)[/tex]:
[tex]\[ \left(n^{-\frac{1}{3}}\right)^6 = n^{-\frac{1}{3} \cdot 6} = n^{-\frac{6}{3}} = n^{-2} \][/tex]

3. Rewrite the expression with positive exponents:
Recall that a negative exponent indicates the reciprocal of the base raised to the positive exponent:
[tex]\[ n^{-2} = \frac{1}{n^2} \][/tex]

Combining the results, we get:
[tex]\[ m^4 \cdot n^{-2} = m^4 \cdot \frac{1}{n^2} = \frac{m^4}{n^2} \][/tex]

Thus, the simplified expression with only positive integer exponents is:

[tex]\(\boxed{\frac{m^4}{n^2}}\)[/tex]

Therefore, the correct answer is:
D. [tex]\(\frac{m^4}{n^2}\)[/tex]