Answer :
Certainly! Let's solve the given expression step-by-step:
[tex]\[ \left(\frac{1}{2}\right)^2 - 6\left(2 - \frac{2}{3}\right) \][/tex]
Step 1: Calculate [tex]\(\left(\frac{1}{2}\right)^2\)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^2 = \frac{1}{4} = 0.25 \][/tex]
Step 2: Simplify the expression inside the parentheses:
[tex]\[ 2 - \frac{2}{3} \][/tex]
To subtract, convert 2 into a fraction with a common denominator:
[tex]\[ 2 = \frac{6}{3} \][/tex]
So, the expression becomes:
[tex]\[ \frac{6}{3} - \frac{2}{3} = \frac{4}{3} \][/tex]
Hence,
[tex]\[ 2 - \frac{2}{3} = \frac{4}{3} \approx 1.3333333333333335 \][/tex]
Step 3: Multiply the simplified expression by -6:
[tex]\[ -6 \times \frac{4}{3} = -6 \times \left(\frac{4}{3}\right) = -\frac{24}{3} = -8 \][/tex]
Step 4: Add the results from steps 1 and 3:
[tex]\[ \left(\frac{1}{2}\right)^2 + \left( - 6 \left(2 - \frac{2}{3}\right) \right) = 0.25 + (-8) \][/tex]
Thus,
[tex]\[ 0.25 - 8 = -7.75 \][/tex]
Now, convert [tex]\(-7.75\)[/tex] into a fraction in simplest form. We know:
[tex]\[ -7.75 = -\frac{31}{4} \][/tex]
Hence, the value of the expression [tex]\(\left(\frac{1}{2}\right)^2 - 6\left(2 - \frac{2}{3}\right)\)[/tex] as a fraction in simplest form is:
[tex]\[ \boxed{-\frac{31}{4}} \][/tex]
[tex]\[ \left(\frac{1}{2}\right)^2 - 6\left(2 - \frac{2}{3}\right) \][/tex]
Step 1: Calculate [tex]\(\left(\frac{1}{2}\right)^2\)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^2 = \frac{1}{4} = 0.25 \][/tex]
Step 2: Simplify the expression inside the parentheses:
[tex]\[ 2 - \frac{2}{3} \][/tex]
To subtract, convert 2 into a fraction with a common denominator:
[tex]\[ 2 = \frac{6}{3} \][/tex]
So, the expression becomes:
[tex]\[ \frac{6}{3} - \frac{2}{3} = \frac{4}{3} \][/tex]
Hence,
[tex]\[ 2 - \frac{2}{3} = \frac{4}{3} \approx 1.3333333333333335 \][/tex]
Step 3: Multiply the simplified expression by -6:
[tex]\[ -6 \times \frac{4}{3} = -6 \times \left(\frac{4}{3}\right) = -\frac{24}{3} = -8 \][/tex]
Step 4: Add the results from steps 1 and 3:
[tex]\[ \left(\frac{1}{2}\right)^2 + \left( - 6 \left(2 - \frac{2}{3}\right) \right) = 0.25 + (-8) \][/tex]
Thus,
[tex]\[ 0.25 - 8 = -7.75 \][/tex]
Now, convert [tex]\(-7.75\)[/tex] into a fraction in simplest form. We know:
[tex]\[ -7.75 = -\frac{31}{4} \][/tex]
Hence, the value of the expression [tex]\(\left(\frac{1}{2}\right)^2 - 6\left(2 - \frac{2}{3}\right)\)[/tex] as a fraction in simplest form is:
[tex]\[ \boxed{-\frac{31}{4}} \][/tex]