Simplify.

[tex]
\frac{1}{2} + \left( \frac{3}{8} - \frac{1}{8} \right)^2
[/tex]

Enter your answer, as a simplified fraction, in the box.

[tex] \square [/tex]



Answer :

To simplify the given expression:

[tex]\[ \frac{1}{2}+\left(\frac{3}{8}-\frac{1}{8}\right)^2 \][/tex]

we will proceed step by step.

### Step 1: Evaluate the expression inside the parentheses

First, evaluate [tex]\(\frac{3}{8} - \frac{1}{8}\)[/tex]:

[tex]\[ \frac{3}{8} - \frac{1}{8} = \frac{3 - 1}{8} = \frac{2}{8} \][/tex]

Simplify [tex]\(\frac{2}{8}\)[/tex]:

[tex]\[ \frac{2}{8} = \frac{1}{4} \][/tex]

So, we have:

[tex]\[ \left(\frac{3}{8} - \frac{1}{8}\right) = \frac{1}{4} \][/tex]

### Step 2: Square the result from Step 1

Next, square [tex]\(\frac{1}{4}\)[/tex]:

[tex]\[ \left(\frac{1}{4}\right)^2 = \frac{1^2}{4^2} = \frac{1}{16} \][/tex]

### Step 3: Add [tex]\(\frac{1}{2}\)[/tex] to the squared result

Now, add [tex]\(\frac{1}{2}\)[/tex] to [tex]\(\frac{1}{16}\)[/tex]:

[tex]\[ \frac{1}{2} + \frac{1}{16} \][/tex]

To add these fractions, find a common denominator. The least common multiple of 2 and 16 is 16. Convert [tex]\(\frac{1}{2}\)[/tex] to a fraction with denominator 16:

[tex]\[ \frac{1}{2} = \frac{1 \cdot 8}{2 \cdot 8} = \frac{8}{16} \][/tex]

Add [tex]\(\frac{8}{16}\)[/tex] and [tex]\(\frac{1}{16}\)[/tex]:

[tex]\[ \frac{8}{16} + \frac{1}{16} = \frac{8 + 1}{16} = \frac{9}{16} \][/tex]

### Final Answer

The simplified form of the given expression is:

[tex]\[ \boxed{\frac{9}{16}} \][/tex]