Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).

[tex] 7^{\frac{2}{4}} [/tex]

The expression above can also be written in the form [tex] \sqrt[c]{a^b} [/tex].
For this expression, [tex] a = \boxed{7} [/tex], [tex] b = \boxed{1} [/tex], and [tex] c = \boxed{2} [/tex].



Answer :

Let's break down the expression [tex]\(7^{\frac{2}{4}}\)[/tex] and rewrite it in the form [tex]\(\sqrt[c]{a^b}\)[/tex].

1. Observe that [tex]\(7^{\frac{2}{4}}\)[/tex] can be simplified as [tex]\(7^{\frac{1}{2}}\)[/tex]. This is because [tex]\(\frac{2}{4}\)[/tex] simplifies to [tex]\(\frac{1}{2}\)[/tex].

2. Recall that the notation [tex]\(7^{\frac{1}{2}}\)[/tex] is another way of writing [tex]\(\sqrt{7}\)[/tex], which corresponds to [tex]\(\sqrt[2]{7^1}\)[/tex].

So, matching this to the form [tex]\(\sqrt[c]{a^b}\)[/tex],
- [tex]\(a = 7\)[/tex] because the base of the original expression remains the same,
- [tex]\(b = 1\)[/tex] because the numerator of the exponent indicates the power of the base inside the root,
- [tex]\(c = 2\)[/tex] because the denominator of the exponent indicates the root.

Therefore, for the expression [tex]\(7^{\frac{2}{4}}\)[/tex],
- [tex]\(a = 7\)[/tex],
- [tex]\(b = 1\)[/tex],
- [tex]\(c = 2\)[/tex].

Thus:
- [tex]\(a = 7\)[/tex],
- [tex]\(b = 1\)[/tex],
- [tex]\(c = 2\)[/tex].

Answer:

Wla.......................