Complete the table below to find solutions to the linear equation [tex]-x + 2y = 10[/tex].

Use parentheses when entering ordered pairs and do not enter spaces between numbers.

Provide your answer below:

[tex]\[
\begin{array}{ccc}
x & y & (x, y) \\
0 & \square & (\square, \square) \\
5 & \square & (\square, \square) \\
\square & 0 & (\square, \square) \\
\end{array}
\][/tex]



Answer :

Sure! Let's find the solutions to the linear equation [tex]\(-x + 2y = 10\)[/tex] and complete the table as requested.

### Step-by-Step Solution:

1. When [tex]\(x = 0\)[/tex]:
Substitute [tex]\(x = 0\)[/tex] into the equation:
[tex]\[ -0 + 2y = 10 \implies 2y = 10 \implies y = \frac{10}{2} = 5 \][/tex]
So, [tex]\((x, y) = (0, 5)\)[/tex].

2. When [tex]\(x = 5\)[/tex]:
Substitute [tex]\(x = 5\)[/tex] into the equation:
[tex]\[ -5 + 2y = 10 \implies 2y = 10 + 5 \implies 2y = 15 \implies y = \frac{15}{2} = 7.5 \][/tex]
So, [tex]\((x, y) = (5, 7.5)\)[/tex].

3. When [tex]\(y = 0\)[/tex]:
Substitute [tex]\(y = 0\)[/tex] into the equation:
[tex]\[ -x + 2 \cdot 0 = 10 \implies -x = 10 \implies x = -10 \][/tex]
So, [tex]\((x, y) = (-10, 0)\)[/tex].

### Filled Table:

[tex]\[ \begin{array}{|c|c|c|} \hline x & y & (x, y) \\ \hline 0 & 5.0 & (0,5.0) \\ \hline 5 & 7.5 & (5,7.5) \\ \hline -10 & 0 & (-10,0) \\ \hline \end{array} \][/tex]

This table represents the solutions to the equation [tex]\(-x + 2y = 10\)[/tex]:

[tex]\[ \begin{aligned} &\left(0, 5.0\right) \\ &\left(5, 7.5\right) \\ &\left(-10, 0\right) \end{aligned} \][/tex]