Answer :
To determine which expression is equivalent to [tex]\( v - 5 - 8v \)[/tex], we can simplify the expression step by step.
1. Combine the like terms involving [tex]\( v \)[/tex]:
[tex]\[ v - 8v = -7v \][/tex]
2. Now, substitute [tex]\(-7v\)[/tex] back into the original expression:
[tex]\[ -7v - 5 \][/tex]
So, the simplified expression is:
[tex]\[ -7v - 5 \][/tex]
Now, let's compare this result with the given answer choices:
1. [tex]\( v - 13 \)[/tex]
2. [tex]\( 4v \)[/tex]
3. [tex]\( -5 - 7v \)[/tex]
4. [tex]\( -12v \)[/tex]
The simplified expression [tex]\(-7v - 5\)[/tex] matches the third answer choice [tex]\( -5 - 7v \)[/tex].
Therefore, the expression equivalent to [tex]\( v - 5 - 8v \)[/tex] is:
[tex]\[ -5 - 7v \][/tex]
1. Combine the like terms involving [tex]\( v \)[/tex]:
[tex]\[ v - 8v = -7v \][/tex]
2. Now, substitute [tex]\(-7v\)[/tex] back into the original expression:
[tex]\[ -7v - 5 \][/tex]
So, the simplified expression is:
[tex]\[ -7v - 5 \][/tex]
Now, let's compare this result with the given answer choices:
1. [tex]\( v - 13 \)[/tex]
2. [tex]\( 4v \)[/tex]
3. [tex]\( -5 - 7v \)[/tex]
4. [tex]\( -12v \)[/tex]
The simplified expression [tex]\(-7v - 5\)[/tex] matches the third answer choice [tex]\( -5 - 7v \)[/tex].
Therefore, the expression equivalent to [tex]\( v - 5 - 8v \)[/tex] is:
[tex]\[ -5 - 7v \][/tex]