### Radicals and Exponents: Tutorial

Question

Enter the correct answer in the box. Use the properties of exponents to simplify the expression.

[tex]\[
\left(y^{\frac{3}{2}} x^{-\frac{1}{2}}\right)^4=
\][/tex]

[tex]\[\qquad\][/tex]



Answer :

Certainly! Let's simplify the given expression step-by-step using the properties of exponents:

Given expression:
[tex]\[ \left( y^{\frac{3}{2}} x^{-\frac{1}{2}} \right)^4 \][/tex]

Using the properties of exponents, specifically the power of a product property [tex]\((a^m \cdot b^n)^p = a^{m \cdot p} \cdot b^{n \cdot p}\)[/tex], we can distribute the exponent 4 to each term inside the parentheses.

First, apply the exponent to the [tex]\(y\)[/tex] term:
[tex]\[ \left( y^{\frac{3}{2}} \right)^4 = y^{\frac{3}{2} \cdot 4} \][/tex]

Next, apply the exponent to the [tex]\(x\)[/tex] term:
[tex]\[ \left( x^{-\frac{1}{2}} \right)^4 = x^{-\frac{1}{2} \cdot 4} \][/tex]

Now, let's calculate the exponents:

For [tex]\(y\)[/tex]:
[tex]\[ \frac{3}{2} \cdot 4 = 6 \][/tex]
So,
[tex]\[ y^{\frac{3}{2} \cdot 4} = y^6 \][/tex]

For [tex]\(x\)[/tex]:
[tex]\[ -\frac{1}{2} \cdot 4 = -2 \][/tex]
So,
[tex]\[ x^{-\frac{1}{2} \cdot 4} = x^{-2} \][/tex]

Combining these results, the simplified expression is:
[tex]\[ y^6 \cdot x^{-2} \][/tex]

Therefore, the simplified form of the expression [tex]\(\left( y^{\frac{3}{2}} x^{-\frac{1}{2}} \right)^4\)[/tex] is:
[tex]\[ y^6 \cdot x^{-2} \][/tex]