Write the equation of the line, using Point-Slope Form, with a slope of [tex]-\frac{5}{3}[/tex] and passing through the ordered pair [tex](-1,5)[/tex].

A. [tex]y-5=-3(x-1)[/tex]
B. [tex]y+5=-\frac{5}{3}(x-3)[/tex]
C. [tex]y-5=-\frac{5}{3}(x+1)[/tex]
D. [tex]y-3=5(x-1)[/tex]



Answer :

Certainly! Let's write the equation of the line using the Point-Slope Form, given the slope [tex]\( m = -\frac{5}{3} \)[/tex] and the point [tex]\((-1, 5)\)[/tex].

The Point-Slope Form equation of a line is:

[tex]\[ y - y_1 = m(x - x_1) \][/tex]

where [tex]\( m \)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line.

1. Identify the slope [tex]\( m \)[/tex]:
[tex]\[ m = -\frac{5}{3} \][/tex]

2. Identify the point [tex]\((x_1, y_1)\)[/tex]:
[tex]\[ (x_1, y_1) = (-1, 5) \][/tex]

3. Substitute [tex]\( m \)[/tex], [tex]\( x_1 \)[/tex], and [tex]\( y_1 \)[/tex] into the Point-Slope Form equation:
[tex]\[ y - 5 = -\frac{5}{3}(x - (-1)) \][/tex]

4. Simplify the expression inside the parentheses:
[tex]\[ y - 5 = -\frac{5}{3}(x + 1) \][/tex]

Therefore, the equation of the line in Point-Slope Form with a slope of [tex]\( -\frac{5}{3} \)[/tex] and passing through the point [tex]\((-1, 5)\)[/tex] is:

[tex]\[ y - 5 = -\frac{5}{3}(x + 1) \][/tex]

Now, let's match this equation with the given options:

(A) [tex]\( y-5=-3(x-1) \)[/tex] — This is incorrect.

(B) [tex]\( y+5=-\frac{5}{3}(x-3) \)[/tex] — This is incorrect.

(C) [tex]\( y-5=-\frac{5}{3}(x+1) \)[/tex] — This is correct.

(D) [tex]\( y-3=5(x-1) \)[/tex] — This is incorrect.

Thus, the correct answer is (C) [tex]\( y-5=-\frac{5}{3}(x+1) \)[/tex].