To simplify the expression [tex]\( x^{-6} y^5 \)[/tex], we will follow the rules of exponents.
1. Understand Negative Exponents:
[tex]\[ x^{-a} = \frac{1}{x^a} \][/tex]
In this case, [tex]\( x^{-6} \)[/tex] can be rewritten as:
[tex]\[ x^{-6} = \frac{1}{x^6} \][/tex]
2. Rewrite the Original Expression:
Now substitute [tex]\( x^{-6} \)[/tex] with [tex]\( \frac{1}{x^6} \)[/tex]:
[tex]\[ x^{-6} y^5 = \left( \frac{1}{x^6} \right) y^5 \][/tex]
3. Combine the Terms:
When we combine the terms, the expression becomes:
[tex]\[ \frac{y^5}{x^6} \][/tex]
Therefore, the simplified form of [tex]\( x^{-6} y^5 \)[/tex] is:
[tex]\[ \frac{y^5}{x^6} \][/tex]