Select the correct answer from each drop-down menu.

The four vertices of an inscribed quadrilateral divide a circle in the ratio [tex]$1:2:5:4$[/tex].

The four angles of the quadrilateral are [tex]\square[/tex] [tex]\because[/tex] [tex]\square[/tex]: [tex]\square[/tex] [tex]^{\circ}[/tex], and [tex]\square[/tex] [tex]\bullet[/tex].



Answer :

To solve this problem, we need to determine the angles formed at the vertices of an inscribed quadrilateral given that they divide the circle in the ratio [tex]\(1:2:5:4\)[/tex].

1. The total sum of all parts in the ratio can be calculated as:
[tex]\[ 1 + 2 + 5 + 4 = 12 \][/tex]

2. A full circle has [tex]\(360^\circ\)[/tex]. To find the angle corresponding to each part of the ratio, we divide the circle's total degrees by the total sum of the parts:
[tex]\[ \frac{360^\circ}{12} = 30^\circ \][/tex]

3. Now, multiply each of the parts in the ratio by [tex]\(30^\circ\)[/tex] to find the angles:
- For the ratio 1 part:
[tex]\[ 1 \times 30^\circ = 30^\circ \][/tex]
- For the ratio 2 parts:
[tex]\[ 2 \times 30^\circ = 60^\circ \][/tex]
- For the ratio 5 parts:
[tex]\[ 5 \times 30^\circ = 150^\circ \][/tex]
- For the ratio 4 parts:
[tex]\[ 4 \times 30^\circ = 120^\circ \][/tex]

Therefore, the four angles of the quadrilateral are [tex]\(30^\circ, 60^\circ, 150^\circ\)[/tex], and [tex]\(120^\circ\)[/tex].

Thus, the completed statement is:

The four angles of the quadrilateral are [tex]\(30^\circ, 60^\circ, 150^\circ\)[/tex], and [tex]\(120^\circ\)[/tex].