Verifying Identities

\begin{tabular}{|c|c|c|}
\hline
Statements & Justification & \multirow{3}{*}{\begin{tabular}{l}
This proof shows the first five steps for verifying \\
[tex]$\cot ^2\left(\frac{x}{2}\right)=\frac{\cos x+1}{\cos x-1}$[/tex] \\
Use the drop-down boxes to complete the steps of the \\
proof.
\end{tabular}} \\
\hline
[tex]$\cot ^2\left(\frac{x}{2}\right)$[/tex] & Given & \\
\hline
[tex]$\frac{1}{\tan ^2\left(\frac{x}{2}\right)}$[/tex] & [tex]$\cot \left(\frac{x}{2}\right) = \frac{1}{\tan \left(\frac{x}{2}\right)}$[/tex] & \\
\hline
[tex]$\frac{1}{\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)^2}$[/tex] & Half-angle identity for [tex]$\tan \left(\frac{x}{2}\right)$[/tex] & \\
\hline
[tex]$\frac{1}{\frac{1-\cos x}{1+\cos x}}$[/tex] & Simplify & \\
\hline
[tex]$\frac{1+\cos x}{1-\cos x}$[/tex] & Multiplicative Inverse (Reciprocal) & \\
\hline
\end{tabular}



Answer :

Certainly! Let's walk through the verification of the trigonometric identity:

[tex]\[\cot ^2\left(\frac{x}{2}\right)=\frac{\cos x+1}{\cos x-1}\][/tex]

### Step-by-Step Solution:

1. Given:
[tex]\[ \cot ^2\left(\frac{x}{2}\right) \][/tex]
This is our starting expression.

2. Transform Cotangent to Tangent Form:
[tex]\[ \cot\left(\frac{x}{2}\right) = \frac{1}{\tan\left(\frac{x}{2}\right)} \][/tex]
Hence,
[tex]\[ \cot ^2\left(\frac{x}{2}\right) = \left(\frac{1}{\tan\left(\frac{x}{2}\right)}\right)^2 \][/tex]

3. Expressing [tex]\(\tan\left(\frac{x}{2}\right)\)[/tex]:
By using the half-angle formula for tangent,
[tex]\[ \tan\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \cos x}{1 + \cos x}} \][/tex]
So,
[tex]\[ \cot ^2\left(\frac{x}{2}\right) = \left(\frac{1}{\sqrt{\frac{1 - \cos x}{1 + \cos x}}}\right)^2 \][/tex]

4. Simplify the Square Root Term:
[tex]\[ \cot ^2\left(\frac{x}{2}\right) = \frac{1}{\left(\sqrt{\frac{1 - \cos x}{1 + \cos x}}\right)^2} \][/tex]
Since [tex]\(\left(\sqrt{\frac{1 - \cos x}{1 + \cos x}}\right)^2\)[/tex] simplifies to [tex]\(\frac{1 - \cos x}{1 + \cos x}\)[/tex],
[tex]\[ \cot ^2\left(\frac{x}{2}\right) = \frac{1}{\frac{1 - \cos x}{1 + \cos x}} \][/tex]

5. Utilize the Multiplicative Inverse (Reciprocal):
By taking the reciprocal,
[tex]\[ \cot ^2\left(\frac{x}{2}\right) = \frac{1 + \cos x}{1 - \cos x} \][/tex]

Thus, we have successfully shown that:
[tex]\[ \cot ^2\left(\frac{x}{2}\right) = \frac{\cos x + 1}{1 - \cos x} \][/tex]

This completes the proof of the identity.