Answered

Simplify [tex]\left(2 x^2\right)\left(3 x^3\right)[/tex].

A. [tex]5 x^5[/tex]
B. [tex]5 x^6[/tex]
C. [tex]6 x^5[/tex]
D. [tex]6 x^6[/tex]



Answer :

To simplify the expression [tex]\(\left(2 x^2\right)\left(3 x^3\right)\)[/tex], let's go through it step-by-step.

1. Separate the Constants and Variable Parts:
- We have the constants [tex]\(2\)[/tex] and [tex]\(3\)[/tex].
- We have the variable parts [tex]\(x^2\)[/tex] and [tex]\(x^3\)[/tex].

2. Multiply the Constants:
- Multiply the constants: [tex]\(2\)[/tex] and [tex]\(3\)[/tex].
[tex]\[ 2 \cdot 3 = 6 \][/tex]

3. Apply the Property of Exponents:
- When multiplying two expressions with the same base, you add the exponents: [tex]\(x^a \cdot x^b = x^{a+b}\)[/tex].
- Here, [tex]\(x^2 \cdot x^3\)[/tex]:
[tex]\[ x^{2+3} = x^5 \][/tex]

4. Combine the Results:
- Combine the product of the constants with the simplified exponent:
[tex]\[ 6 \cdot x^5 = 6x^5 \][/tex]

So, the simplified expression is [tex]\(6x^5\)[/tex]. Therefore, the correct answer is:

[tex]\(\boxed{6 x^5}\)[/tex]