Answered

3. Which expression is equivalent to [tex]\frac{10 a^{10}}{2 a^2}[/tex]?

A. [tex]5 a^8[/tex]

B. [tex]5 a \frac{10}{2}[/tex]

C. [tex]8 a^{10-2}[/tex]

D. [tex]8 a \frac{10}{2}[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\frac{10 a^{10}}{2 a^2}\)[/tex], we can simplify the given fraction step by step. Let's proceed with the simplification:

1. Simplify the coefficients:
- The numerator has a coefficient of 10.
- The denominator has a coefficient of 2.
- When we divide 10 by 2, we get 5.

Therefore, the simplified coefficient is 5.

2. Simplify the exponent of [tex]\( a \)[/tex]:
- The numerator has [tex]\( a^{10} \)[/tex].
- The denominator has [tex]\( a^2 \)[/tex].
- When we divide powers of the same base, we subtract the exponents (i.e., [tex]\( a^m / a^n = a^{m-n} \)[/tex]).

So, [tex]\( a^{10} / a^2 = a^{10-2} = a^8 \)[/tex].

Combining these two results, the simplified expression for [tex]\(\frac{10 a^{10}}{2 a^2}\)[/tex] is:

[tex]\[ 5 a^8 \][/tex]

### Answer:

The equivalent expression to [tex]\(\frac{10 a^{10}}{2 a^2}\)[/tex] is:

[tex]\[ 5 a^8 \][/tex]

Thus, the correct choice from the provided options is:

[tex]\[ \boxed{5 a^8} \][/tex]