In the [tex]$xy$[/tex]-plane, what is the [tex]$y$[/tex]-intercept of the graph of the equation [tex]$y=6\left(x-\frac{1}{2}\right)(x+3)$[/tex]?

A. [tex]$-9$[/tex]
B. [tex]$-\frac{1}{2}$[/tex]
C. 3
D. 9



Answer :

To find the [tex]\(y\)[/tex]-intercept of the graph of the equation [tex]\( y = 6 \left(x - \frac{1}{2}\right)(x + 3) \)[/tex], we need to determine the value of [tex]\(y\)[/tex] when [tex]\(x = 0\)[/tex].

To do this:

1. Substitute [tex]\(x = 0\)[/tex] into the equation:

[tex]\[ y = 6 \left(0 - \frac{1}{2}\right)(0 + 3) \][/tex]

2. Simplify inside the parentheses:

[tex]\[ y = 6 \left(-\frac{1}{2}\right)(3) \][/tex]

3. Perform the multiplication:

[tex]\[ y = 6 \times -\frac{1}{2} \times 3 \][/tex]

4. Simplify the multiplication step-by-step:

[tex]\[ y = 6 \times -\frac{1}{2} = -3 \][/tex]

[tex]\[ y = -3 \times 3 = -9 \][/tex]

So, the [tex]\(y\)[/tex]-intercept is [tex]\(-9\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{-9} \][/tex]