Answer :

Sure! Let's simplify the given algebraic expression step by step:

The expression we have is:

[tex]\[ \frac{-8x^2 + 2x - 1}{-2x} \][/tex]

We'll simplify the terms in the numerator by dividing each term by the denominator.

First, separate the numerator into three individual fractions:

[tex]\[ \frac{-8x^2}{-2x} + \frac{2x}{-2x} - \frac{1}{-2x} \][/tex]

Now, let's simplify each fraction individually:

1. Simplify [tex]\( \frac{-8x^2}{-2x} \)[/tex]:
[tex]\[ \frac{-8x^2}{-2x} = \frac{8x^2}{2x} = 4x \][/tex]
(Because the negatives cancel each other out and [tex]\( 8x^2 \div 2x = 4x \)[/tex]).

2. Simplify [tex]\( \frac{2x}{-2x} \)[/tex]:
[tex]\[ \frac{2x}{-2x} = -1 \][/tex]
(Because [tex]\( \frac{2x}{2x} = 1 \)[/tex] and we have one negative sign).

3. Simplify [tex]\( \frac{-1}{-2x} \)[/tex]:
[tex]\[ \frac{-1}{-2x} = \frac{1}{2x} \][/tex]
(Again, the negatives cancel each other out).

Finally, combine all the simplified parts together:

[tex]\[ 4x - 1 + \frac{1}{2x} \][/tex]

So, the simplified form of the given expression

[tex]\[ \frac{-8x^2 + 2x - 1}{-2x} \][/tex]

is:

[tex]\[ 4x - 1 + \frac{1}{2x} \][/tex]

This is the simplified expression.