Answer :

Certainly! Let's solve the division of the polynomial [tex]\( \left(x^2 + 3x + 30\right) \div (x + 3) \)[/tex] using polynomial long division.

### Step-by-Step Solution:

1. Set up the division:
We divide the polynomial [tex]\( x^2 + 3x + 30 \)[/tex] by [tex]\( x + 3 \)[/tex].

```
________
x + 3 | x^2 + 3x + 30
```

2. First Division:
- Divide the leading term of the numerator ([tex]\(x^2\)[/tex]) by the leading term of the denominator ([tex]\(x\)[/tex]):
[tex]\[ \frac{x^2}{x} = x \][/tex]
- The quotient so far is [tex]\( x \)[/tex].

```
x
________
x + 3 | x^2 + 3x + 30
```

3. Multiply and Subtract:
- Multiply [tex]\(x\)[/tex] by [tex]\(x + 3\)[/tex]:
[tex]\[ x \cdot (x + 3) = x^2 + 3x \][/tex]
- Subtract this product from the original polynomial:
[tex]\[ (x^2 + 3x + 30) - (x^2 + 3x) = 30 \][/tex]

4. Next Division:
- Since there is no more [tex]\(x\)[/tex] term in the polynomial 30, we finish the division here.
- The remainder is [tex]\(30\)[/tex].

### Conclusion:

- The quotient is [tex]\( x \)[/tex].
- The remainder is [tex]\( 30 \)[/tex].

Therefore, the final result of the division is:

[tex]\[ \left(x^2 + 3x + 30\right) \div (x + 3) = x \text{ remainder } 30 \][/tex]

Or, if you prefer the full expression:

[tex]\[ \frac{x^2 + 3x + 30}{x + 3} = x + \frac{30}{x + 3} \][/tex]