Answer :

To solve the given expression [tex]\(\frac{1}{3} + \frac{3}{4} - \frac{2}{6}\)[/tex], let's follow the steps in a detailed and structured manner.

First, simplify the fractions if possible:

- [tex]\(\frac{2}{6}\)[/tex] can be simplified. The greatest common divisor (GCD) of 2 and 6 is 2, so:
[tex]\[ \frac{2}{6} = \frac{2 \div 2}{6 \div 2} = \frac{1}{3} \][/tex]

Now, our expression looks like:
[tex]\[ \frac{1}{3} + \frac{3}{4} - \frac{1}{3} \][/tex]

Next, notice that [tex]\(\frac{1}{3} - \frac{1}{3} = 0\)[/tex]. Therefore, we're left with:
[tex]\[ 0 + \frac{3}{4} \][/tex]

Adding zero to [tex]\(\frac{3}{4}\)[/tex] does not change its value:
[tex]\[ \frac{3}{4} \][/tex]

So, the result of the given expression [tex]\(\frac{1}{3} + \frac{3}{4} - \frac{2}{6}\)[/tex] is:
[tex]\[ \frac{3}{4} \][/tex]

Numerically, if we convert [tex]\(\frac{3}{4}\)[/tex] to a decimal, it equals [tex]\(0.75\)[/tex].

Therefore, the final answer is:
[tex]\[ 0.75 \][/tex]