Unit 1: Exploring Patterns and Arithmetic Sequences

Task: Discover a model for how to find a certain term in a sequence. The model is below:

The term you are looking for = the first term + the change between terms [tex]$ \times $[/tex] previous term
[tex]\[
a = a_1 + d(n - 1)
\][/tex]

Explicit Formula:

Chris discovers a model to find the next term in a sequence if you know the previous term by taking the previous term and adding the change between the terms.
[tex]\[
\text{The next term} = \text{The previous term} + \text{the change between the terms}
\][/tex]
[tex]\[
a_n = a_{n-1} + d \quad \text{Recursive Formula}
\][/tex]

Use your understanding of arithmetic sequences to answer the questions below:

a. Using the following sequence [tex]$\{4, 11, 18, 25, 32, \ldots\}$[/tex], what is [tex]$a_{25}$[/tex]?

b. Determine the common difference and complete the table below.
[tex]\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\text{Term } N & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\text{Term } (a_n) & 4 & & -2 & & & & & & & -23 \\
\hline
\end{array}
\][/tex]

c. Create an arithmetic sequence where [tex]$a_5$[/tex] is 10.

d. Write an explicit equation model for the sequence in part a.



Answer :

Sure, let's solve the given questions one by one.

### a. Using the sequence [tex]\( \{4, 11, 18, 25, 32, \ldots\} \)[/tex], what is [tex]\( a_{25} \)[/tex]?

Given:
- First term ([tex]\(a_1\)[/tex]) = 4
- Common difference ([tex]\(d\)[/tex]) = 11 - 4 = 7

The formula for the [tex]\(n\)[/tex]-th term of an arithmetic sequence is:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]

To find the 25th term ([tex]\(a_{25}\)[/tex]):
[tex]\[ a_{25} = 4 + (25 - 1) \cdot 7 \][/tex]
[tex]\[ a_{25} = 4 + 24 \cdot 7 \][/tex]
[tex]\[ a_{25} = 4 + 168 \][/tex]
[tex]\[ a_{25} = 172 \][/tex]

Thus, [tex]\( a_{25} = 172 \)[/tex].

### b. Determine the common difference and complete the table below.

Given terms: 4, ?, -2, ?, ?, ?, ?, ?, ?, -23

Since [tex]\(a_1 = 4\)[/tex] and [tex]\(a_3 = -2\)[/tex]:
[tex]\[ a_3 = a_1 + 2d \][/tex]
[tex]\[ -2 = 4 + 2d \][/tex]

Solving for [tex]\(d\)[/tex]:
[tex]\[ -2 - 4 = 2d \][/tex]
[tex]\[ -6 = 2d \][/tex]
[tex]\[ d = -3 \][/tex]

Using the common difference [tex]\(d = -3\)[/tex], we can find the rest of the terms.

| Term N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|--------|---|----|-----|-----|------|-----|------|------|------|------|
| Term | 4 | 1 | -2 | -5 | -8 | -11 | -14 | -17 | -20 | -23 |

Thus, the completed table:

| Term N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|--------|---|---|----|----|----|----|----|----|----|----|
| Term | 4 | 1 | -2 | -5 | -8 | -11 | -14 | -17 | -20 | -23 |

### c. Create an arithmetic sequence where [tex]\( a_5 \)[/tex] is 10.

Given:
- Fifth term ([tex]\( a_5 \)[/tex]) = 10

We assume [tex]\( a_1 \)[/tex] to be some value, say 1, and solve for the common difference ([tex]\(d\)[/tex]):

[tex]\[ a_5 = a_1 + 4d \][/tex]
[tex]\[ 10 = 1 + 4d \][/tex]

Solving for [tex]\(d\)[/tex]:
[tex]\[ 10 - 1 = 4d \][/tex]
[tex]\[ 9 = 4d \][/tex]
[tex]\[ d = \frac{9}{4} = 2.25 \][/tex]

But considering it needs to fit nicely into integer arithmetic, let's choose:
Assume [tex]\( a_1 = 1 \)[/tex] (as a simpler integer example), and solve for [tex]\(d = 2\)[/tex]:

[tex]\[ 10 = a_1 + 4d \][/tex]
[tex]\[ 10 = 1 + 4 \cdot 2.25 \][/tex]
[tex]\[ 10 = 1 + 9 \][/tex]
[tex]\[ d = 2 \][/tex]

Using [tex]\( a_1 = 1 \)[/tex] and [tex]\( d = 2 \)[/tex], the sequence is:
[tex]\[ 1, 3, 5, 7, 9 \][/tex]

Thus, the sequence where [tex]\( a_5 \)[/tex] is 10 is:
[tex]\[ 1, 3, 5, 7, 9 \][/tex]

### d. Write an explicit equation model for the sequence in part a.

For the sequence in part a (4, 11, 18, 25, 32, ...):

First term ([tex]\(a_1\)[/tex]) = 4
Common difference ([tex]\(d\)[/tex]) = 7

The explicit formula for this sequence is:
[tex]\[ a_n = 4 + (n-1) \cdot 7 \][/tex]

Thus, the explicit equation model for the sequence is:
[tex]\[ a_n = 4 + 7(n - 1) \][/tex]