Use the tables to find [tex]$(p+q)(2)$[/tex].

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$p(x)$[/tex] \\
\hline
4 & -1 \\
\hline
2 & 3 \\
\hline
-3 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$q(x)$[/tex] \\
\hline
4 & 1 \\
\hline
2 & -2 \\
\hline
-3 & 5 \\
\hline
\end{tabular}

[tex](p+q)(2)=[/tex]



Answer :

To find [tex]\((p + q)(2)\)[/tex], we will utilize the given tables for the functions [tex]\(p(x)\)[/tex] and [tex]\(q(x)\)[/tex].

The tables provided are:

For [tex]\(p(x)\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & p(x) \\ \hline 4 & -1 \\ 2 & 3 \\ -3 & 2 \\ \hline \end{array} \][/tex]

For [tex]\(q(x)\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & q(x) \\ \hline 4 & 1 \\ 2 & -2 \\ -3 & 5 \\ \hline \end{array} \][/tex]

Now, to find [tex]\((p + q)(2)\)[/tex]:

1. First, determine the value of [tex]\(p(2)\)[/tex]:
[tex]\[ p(2) = 3 \][/tex]

2. Next, determine the value of [tex]\(q(2)\)[/tex]:
[tex]\[ q(2) = -2 \][/tex]

3. Add these values to find [tex]\((p + q)(2)\)[/tex]:
[tex]\[ (p + q)(2) = p(2) + q(2) = 3 + (-2) = 1 \][/tex]

Therefore, the value of [tex]\((p + q)(2)\)[/tex] is [tex]\(1\)[/tex].