Examine the system of equations.

[tex]\[ 4.2x + 8y = 41.8 \][/tex]
[tex]\[ -4.2x + y = 19.4 \][/tex]

Use the linear combination method to solve the system of equations. What is the value of [tex]\( x \)[/tex]?

A. [tex]\(-3\)[/tex]
B. [tex]\(-1\)[/tex]
C. 1.7
D. 6.8



Answer :

To solve the system of equations

[tex]\[ 4.2x + 8y = 41.8 \][/tex]
[tex]\[ -4.2x + y = 19.4 \][/tex]

using the linear combination (or elimination) method, we will follow these steps:

### Step 1: Combine the Equations

First, observe that the coefficients of [tex]\( x \)[/tex] in the two equations are opposites of each other, i.e., [tex]\( 4.2 \)[/tex] and [tex]\( -4.2 \)[/tex]. This makes it ideal for elimination.

Add the two equations together to eliminate [tex]\( x \)[/tex]:
[tex]\[ (4.2x + 8y) + (-4.2x + y) = 41.8 + 19.4 \][/tex]

### Step 2: Simplify the Resulting Equation

When we add them, the [tex]\( x \)[/tex] terms cancel each other out:
[tex]\[ 4.2x - 4.2x + 8y + y = 41.8 + 19.4 \][/tex]
[tex]\[ 0 + 9y = 61.2 \][/tex]
[tex]\[ 9y = 61.2 \][/tex]

### Step 3: Solve for [tex]\( y \)[/tex]

Divide both sides of the equation by 9 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{61.2}{9} \][/tex]
[tex]\[ y ≈ 6.8 \][/tex]

### Step 4: Substitute [tex]\( y \)[/tex] back into one of the original equations

Next, we substitute [tex]\( y ≈ 6.8 \)[/tex] into one of the original equations to solve for [tex]\( x \)[/tex]. Let's use the second equation:
[tex]\[ -4.2x + y = 19.4 \][/tex]
[tex]\[ -4.2x + 6.8 = 19.4 \][/tex]

### Step 5: Solve for [tex]\( x \)[/tex]

Isolate the [tex]\( x \)[/tex] term and solve for [tex]\( x \)[/tex]:
[tex]\[ -4.2x = 19.4 - 6.8 \][/tex]
[tex]\[ -4.2x = 12.6 \][/tex]
[tex]\[ x = \frac{12.6}{-4.2} \][/tex]
[tex]\[ x = -3 \][/tex]

So, the value of [tex]\( x \)[/tex] is [tex]\( -3 \)[/tex].