Answer :

To address the problems given, we will use the function [tex]\( f(x) = x^2 \)[/tex].

1. Finding [tex]\( f(x) + f(x) + f(x) \)[/tex]

First, we need to add the function [tex]\( f(x) \)[/tex] three times:
[tex]\[ f(x) + f(x) + f(x) \][/tex]
Since each [tex]\( f(x) \)[/tex] is [tex]\( x^2 \)[/tex]:
[tex]\[ f(x) + f(x) + f(x) = x^2 + x^2 + x^2 = 3x^2 \][/tex]
So:
[tex]\[ f(x) + f(x) + f(x) = 3f(x) \][/tex]
[tex]\[ 3f(x) = 3x^2 \][/tex]

2. Evaluate [tex]\( 3f(2) \)[/tex]

To evaluate [tex]\( 3f(2) \)[/tex], we first need to find [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = 2^2 = 4 \][/tex]
Then we calculate:
[tex]\[ 3 f(2) = 3 \times 4 = 12 \][/tex]

Thus, summarizing the steps and results:

1. [tex]\( f(x) + f(x) + f(x) = 3f(x) \)[/tex]
2. [tex]\( 3f(x) = 3x^2 \)[/tex]
3. [tex]\( 3f(2) = 12 \)[/tex]

Therefore, the evaluated answers are:

1. [tex]\( f(x) + f(x) + f(x) = 3f(x) \)[/tex]
2. [tex]\( 3f(x) = 3x^2 \)[/tex]
3. [tex]\( 3f(2) = 12 \)[/tex]