Answer :
To determine the [tex]$x$[/tex]-intercepts of the quadratic function [tex]\( g(x) = -2(x-4)(x+1) \)[/tex], we need to find the values of [tex]\( x \)[/tex] for which [tex]\( g(x) = 0 \)[/tex].
Let's set the function equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ g(x) = -2(x-4)(x+1) = 0 \][/tex]
The product of two factors is zero if at least one of the factors is zero. Therefore, we need to solve the equations:
[tex]\[ (x-4) = 0 \][/tex]
and
[tex]\[ (x+1) = 0 \][/tex]
Solving these equations for [tex]\( x \)[/tex]:
1. For [tex]\( (x-4) = 0 \)[/tex]:
[tex]\[ x = 4 \][/tex]
2. For [tex]\( (x+1) = 0 \)[/tex]:
[tex]\[ x = -1 \][/tex]
Thus, the [tex]\( x \)[/tex]-intercepts of the function [tex]\( g(x) = -2(x-4)(x+1) \)[/tex] are [tex]\( (4, 0) \)[/tex] and [tex]\( (-1, 0) \)[/tex].
So, the correct answer is:
D. [tex]\((4,0)\)[/tex] and [tex]\((-1,0)\)[/tex]
Let's set the function equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ g(x) = -2(x-4)(x+1) = 0 \][/tex]
The product of two factors is zero if at least one of the factors is zero. Therefore, we need to solve the equations:
[tex]\[ (x-4) = 0 \][/tex]
and
[tex]\[ (x+1) = 0 \][/tex]
Solving these equations for [tex]\( x \)[/tex]:
1. For [tex]\( (x-4) = 0 \)[/tex]:
[tex]\[ x = 4 \][/tex]
2. For [tex]\( (x+1) = 0 \)[/tex]:
[tex]\[ x = -1 \][/tex]
Thus, the [tex]\( x \)[/tex]-intercepts of the function [tex]\( g(x) = -2(x-4)(x+1) \)[/tex] are [tex]\( (4, 0) \)[/tex] and [tex]\( (-1, 0) \)[/tex].
So, the correct answer is:
D. [tex]\((4,0)\)[/tex] and [tex]\((-1,0)\)[/tex]