Answer :
To simplify the expression [tex]\(5 + 5q + 4q - q\)[/tex], follow these steps:
1. Combine like terms:
- Identify the terms that contain the variable [tex]\(q\)[/tex]: [tex]\(5q\)[/tex], [tex]\(4q\)[/tex], and [tex]\(-q\)[/tex].
- Combine these terms together by adding and subtracting the coefficients of [tex]\(q\)[/tex]:
[tex]\[ 5q + 4q - q = (5 + 4 - 1)q = 8q \][/tex]
2. Combine constant terms:
- There is only one constant term in the expression: [tex]\(5\)[/tex].
3. Write the simplified expression:
- Combine the simplified variable expression, [tex]\(8q\)[/tex], with the constant term, [tex]\(5\)[/tex].
Thus, the simplified expression is:
[tex]\[ 8q + 5 \][/tex]
Therefore, the expression [tex]\(5 + 5q + 4q - q\)[/tex] simplifies to [tex]\(8q + 5\)[/tex].
1. Combine like terms:
- Identify the terms that contain the variable [tex]\(q\)[/tex]: [tex]\(5q\)[/tex], [tex]\(4q\)[/tex], and [tex]\(-q\)[/tex].
- Combine these terms together by adding and subtracting the coefficients of [tex]\(q\)[/tex]:
[tex]\[ 5q + 4q - q = (5 + 4 - 1)q = 8q \][/tex]
2. Combine constant terms:
- There is only one constant term in the expression: [tex]\(5\)[/tex].
3. Write the simplified expression:
- Combine the simplified variable expression, [tex]\(8q\)[/tex], with the constant term, [tex]\(5\)[/tex].
Thus, the simplified expression is:
[tex]\[ 8q + 5 \][/tex]
Therefore, the expression [tex]\(5 + 5q + 4q - q\)[/tex] simplifies to [tex]\(8q + 5\)[/tex].