Given:
[tex]\[ g(x) = x - 6 \][/tex]

If the opposite of [tex]\( g(x) \)[/tex] is [tex]\( -g(x) \)[/tex], then:
[tex]\[ -g(x) = \square \][/tex]

[tex]\[ g(x) + (-g(x)) = \square \][/tex]



Answer :

Let's solve the question step-by-step.

First, we are given the function [tex]\( g(x) = x - 6 \)[/tex].

### Step 1: Finding [tex]\(-g(x)\)[/tex]
The opposite of [tex]\( g(x) \)[/tex] is [tex]\(-g(x)\)[/tex]. To find [tex]\(-g(x)\)[/tex], we multiply [tex]\( g(x) \)[/tex] by [tex]\(-1\)[/tex]:

[tex]\[ -g(x) = -1 \cdot (x - 6) \][/tex]

Distribute the [tex]\(-1\)[/tex] across the terms inside the parentheses:

[tex]\[ -g(x) = -x + 6 \][/tex]

So, we have:

[tex]\[ -g(x) = 6 - x \][/tex]

### Step 2: Adding [tex]\( g(x) \)[/tex] and [tex]\(-g(x)\)[/tex]
Next, we need to find the sum of [tex]\( g(x) \)[/tex] and [tex]\(-g(x) \)[/tex]:

[tex]\[ g(x) + (-g(x)) = (x - 6) + (6 - x) \][/tex]

Combine the terms:

[tex]\[ (x - 6 + 6 - x) \][/tex]

Notice that [tex]\( x \)[/tex] and [tex]\(-x\)[/tex] cancel each other out:

[tex]\[ x - x + 6 - 6 = 0 \][/tex]

So, the sum is:

[tex]\[ g(x) + (-g(x)) = 0 \][/tex]

### Final Answer
[tex]\[ -g(x) = 6 - x \][/tex]
[tex]\[ g(x) + (-g(x)) = 0 \][/tex]