Use the linear combination method to solve the system of equations.

[tex]\[
\begin{array}{l}
-3x + 8y = 16 \\
3x + 4y = 8
\end{array}
\][/tex]

What is the value of [tex]\(x\)[/tex]?

A. -1
B. 0
C. 1
D. 2



Answer :

Sure, let's solve the system of equations step by step using the linear combination method:

Given the system:
[tex]\[ \begin{cases} -3x + 8y = 16 \\ 3x + 4y = 8 \end{cases} \][/tex]

1. Add the two equations to eliminate [tex]\(x\)[/tex]:
[tex]\[ (-3x + 8y) + (3x + 4y) = 16 + 8 \][/tex]

2. Combine like terms:
[tex]\[ -3x + 3x + 8y + 4y = 24 \][/tex]
[tex]\[ 12y = 24 \][/tex]

3. Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{24}{12} = 2 \][/tex]

4. Substitute [tex]\(y = 2\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex]. Using the second equation [tex]\(3x + 4y = 8\)[/tex]:
[tex]\[ 3x + 4(2) = 8 \][/tex]
[tex]\[ 3x + 8 = 8 \][/tex]

5. Isolate [tex]\(x\)[/tex]:
[tex]\[ 3x = 8 - 8 \][/tex]
[tex]\[ 3x = 0 \][/tex]
[tex]\[ x = \frac{0}{3} = 0 \][/tex]

Hence, the value of [tex]\(x\)[/tex] is [tex]\(\boxed{0}\)[/tex].