Answer :

Certainly! Let's expand the given expression [tex]\((2x + 1)(-2x^2 - x - 1)\)[/tex] step by step.

### Step 1: Distribute [tex]\(2x\)[/tex] to each term in the second polynomial

First, we need to distribute [tex]\(2x\)[/tex] across the terms in [tex]\(-2x^2 - x - 1\)[/tex]:
[tex]\[ 2x \cdot (-2x^2) + 2x \cdot (-x) + 2x \cdot (-1) \][/tex]

So,
[tex]\[ 2x \cdot (-2x^2) = -4x^3 \][/tex]
[tex]\[ 2x \cdot (-x) = -2x^2 \][/tex]
[tex]\[ 2x \cdot (-1) = -2x \][/tex]

Combining these, we get:
[tex]\[ -4x^3 - 2x^2 - 2x \][/tex]

### Step 2: Distribute [tex]\(1\)[/tex] to each term in the second polynomial

Next, we distribute [tex]\(1\)[/tex] across the terms in [tex]\(-2x^2 - x - 1\)[/tex]:
[tex]\[ 1 \cdot (-2x^2) + 1 \cdot (-x) + 1 \cdot (-1) \][/tex]

So,
[tex]\[ 1 \cdot (-2x^2) = -2x^2 \][/tex]
[tex]\[ 1 \cdot (-x) = -x \][/tex]
[tex]\[ 1 \cdot (-1) = -1 \][/tex]

Combining these, we get:
[tex]\[ -2x^2 - x - 1 \][/tex]

### Step 3: Combine all terms

Now we need to add all the results together:
[tex]\[ -4x^3 - 2x^2 - 2x + (-2x^2 - x - 1) \][/tex]

Combine the like terms:

[tex]\[ = -4x^3 + (-2x^2 - 2x^2) + (-2x - x) - 1 \][/tex]
[tex]\[ = -4x^3 - 4x^2 - 3x - 1 \][/tex]

### Final Answer

The expanded expression in standard polynomial form is:
[tex]\[ -4x^3 - 4x^2 - 3x - 1 \][/tex]