Consider the following sets.

[tex]\[ U = \{ \text{ordered pairs on a coordinate plane} \} \][/tex]
[tex]\[ A = \{ \text{ordered pair solutions to } y = x \} \][/tex]
[tex]\[ B = \{ \text{ordered pair solutions to } y = 2x \} \][/tex]

Which ordered pair satisfies [tex]\( A \cap B \)[/tex]?

A. (0,0)
B. (1,1)
C. (1,2)
D. (2,1)



Answer :

To solve this problem, we need to identify the point(s) of intersection between the sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex].

1. Define the sets:
- Set [tex]\(A\)[/tex]: This set contains all the ordered pairs [tex]\((x, y)\)[/tex] such that [tex]\(y = x\)[/tex].
- Set [tex]\(B\)[/tex]: This set contains all the ordered pairs [tex]\((x, y)\)[/tex] such that [tex]\(y = 2x\)[/tex].

2. Intersection of sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
- [tex]\(A \cap B\)[/tex] includes the ordered pairs that satisfy both [tex]\(y = x\)[/tex] and [tex]\(y = 2x\)[/tex].

3. Find the common solutions:
- For a pair [tex]\((x, y)\)[/tex] to be in both [tex]\(A\)[/tex] and [tex]\(B\)[/tex], the following must be true simultaneously:
[tex]\[ y = x \][/tex]
[tex]\[ y = 2x \][/tex]

4. Solve the system of equations:
- Substitute [tex]\(y = x\)[/tex] into [tex]\(y = 2x\)[/tex]:
[tex]\[ x = 2x \][/tex]
- Solve for [tex]\(x\)[/tex]:
[tex]\[ x - 2x = 0 \implies -x = 0 \implies x = 0 \][/tex]

5. Determine y:
- Substitute [tex]\(x = 0\)[/tex] back into [tex]\(y = x\)[/tex]:
[tex]\[ y = 0 \][/tex]

6. Identify the ordered pair:
- The ordered pair that satisfies both equations is [tex]\((0, 0)\)[/tex].

Therefore, the ordered pair that satisfies [tex]\(A \cap B\)[/tex] is [tex]\((0, 0)\)[/tex].