Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match the systems of equations with their solution sets.

[tex]\[
\begin{array}{c}
y + 12 = x^2 + x \\
x + y = 3 \\
y + 5 = x^2 - 3x \\
2x + y = 1 \\
y - 17 = x^2 - 9x \\
-x + y = 1
\end{array}
\][/tex]

Solution Set
[tex]\[
\begin{array}{l}
\{(-2,3), (7,-6)\} \\
\{(-5,8), (3,0)\} \\
\{(-2,5), (3,-5)\} \\
\{(2,3), (8,9)\}
\end{array}
\][/tex]

[tex]\[
\begin{array}{c}
y - 15 = x^2 + 4x \\
x - y = 1
\end{array}
\][/tex]

[tex]\[
\begin{array}{c}
y - 6 = x^2 - 3x \\
x + 2y = 2
\end{array}
\][/tex]

[tex]\[
\begin{array}{c}
y - 15 = -x^2 + 4x \\
x + y = 1
\end{array}
\][/tex]

Linear-Quadratic System of Equations
[tex]\[
\square \\
\square \\
\square \\
\square
\][/tex]



Answer :

Let's start by examining each system of linear and quadratic equations one by one and compare the solutions.

1. [tex]\(\left\{\begin{array}{l} y + 12 = x^2 + x \\ x + y = 3 \\ \end{array}\right.\)[/tex]

2. [tex]\(\left\{\begin{array}{l} y + 5 = x^2 - 3x \\ 2x + y = 1 \\ \end{array}\right.\)[/tex]

3. [tex]\(\left\{\begin{array}{l} y - 17 = x^2 - 9x \\ -x + y = 1 \\ \end{array}\right.\)[/tex]

4. [tex]\(\left\{\begin{array}{l} y - 15 = x^2 + 4x \\ x - y = 1 \\ \end{array}\right.\)[/tex]

5. [tex]\(\left\{\begin{array}{l} y - 6 = x^2 - 3x \\ x + 2y = 2 \\ \end{array}\right.\)[/tex]

6. [tex]\(\left\{\begin{array}{l} y - 15 = -x^2 + 4x \\ x + y = 1 \\ \end{array}\right.\)[/tex]



We note the provided solution sets:
- [tex]\(\{(-2, 3), (7, -6)\}\)[/tex]
- [tex]\(\{(-5, 8), (3, 0)\}\)[/tex]
- [tex]\(\{(-2, 5), (3, -5)\}\)[/tex]
- [tex]\(\{(2, 3), (8, 9)\}\)[/tex]

After evaluating these systems step-by-step, we find that none of the systems match these solution sets perfectly.

Therefore, the matches are:
[tex]\[ (\square, \square, \square, \square) = ([], [], [], []) \][/tex]

Because none of the pairings from the systems of equations seems to match any given solution sets.