Rewrite the formula [tex]$P = 2l + 2w$[/tex] in terms of the width, [tex]$w$[/tex]. Use the formula to find the width when the perimeter is 70 and the length is 22.

A. [tex]$w = \frac{P - 2l}{2}$[/tex] ; [tex]$w = 9$[/tex]
B. [tex]$w = \frac{P}{2} - l$[/tex] ; [tex]$w = 13$[/tex]
C. [tex]$w = P - 2l$[/tex] ; [tex]$w = 26$[/tex]
D. [tex]$w = \frac{\bullet}{2}$[/tex] ; [tex]$w = 24$[/tex]



Answer :

Okay, let's solve this step-by-step. We are given a rectangle where we know the perimeter [tex]\(P\)[/tex] and the length [tex]\(l\)[/tex], and we need to find the width [tex]\(w\)[/tex].

The perimeter [tex]\(P\)[/tex] of a rectangle is given by the formula:
[tex]\[ P = 2l + 2w \][/tex]

Our goal is to rearrange this formula to solve for [tex]\(w\)[/tex]:

1. Start with the perimeter formula for a rectangle:
[tex]\[ P = 2l + 2w \][/tex]

2. Subtract [tex]\(2l\)[/tex] from both sides to isolate the term with [tex]\(w\)[/tex]:
[tex]\[ P - 2l = 2w \][/tex]

3. Divide both sides by 2 to solve for [tex]\(w\)[/tex]:
[tex]\[ w = \frac{P - 2l}{2} \][/tex]

Now, we can substitute the given values for the perimeter [tex]\(P\)[/tex] and the length [tex]\(l\)[/tex] into the formula to find the width [tex]\(w\)[/tex]:

4. Given:
[tex]\[ P = 70 \][/tex]
[tex]\[ l = 22 \][/tex]

5. Substitute these values into the formula:
[tex]\[ w = \frac{70 - 2(22)}{2} \][/tex]

6. Calculate the expression inside the parentheses first:
[tex]\[ w = \frac{70 - 44}{2} \][/tex]

7. Subtract 44 from 70:
[tex]\[ w = \frac{26}{2} \][/tex]

8. Finally, divide 26 by 2:
[tex]\[ w = 13 \][/tex]

So, the width [tex]\(w\)[/tex] when the perimeter is 70 and the length is 22 is 13.